RESEARCH PAPERS: Forced Convection

Heat Transfer Characteristics of Arrays of Free-Surface Liquid Jets

[+] Author and Article Information
Y. Pan, B. W. Webb

Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

J. Heat Transfer 117(4), 878-883 (Nov 01, 1995) (6 pages) doi:10.1115/1.2836305 History: Received December 01, 1994; Revised April 01, 1995; Online January 23, 2008


In this study, local heat transfer data under arrays of free-surface liquid jets are measured with a two-dimensional infrared radiometer. Experimental measurements were made for three nozzle diameters using a seven-jet staggered and a nine-jet inline geometric array configuration. Nozzle-to-plate spacings of two and five nozzle diameters were investigated for four jet center-to-center spacings ranging from two to eight diameters in the jet Reynolds number range of 5000 to 20,000. Results show that the stagnation Nusselt number under the central jet is independent of array configuration and jet-to-jet spacing. The different inter jet flow interaction, as represented by different jet array configurations (the in-line array and the staggered array with different nozzle-to-nozzle spacings), shows negligible influence on local heat transfer under the central jet. Differences in the heat transfer characteristics for the two nozzle-to-plate spacings investigated were the result of an observed transition from confined submerged central jet flow to free-surface jet flow as the nozzle-to-plate spacing was increased. Secondary maxima in the Nusselt number were observed between the adjacent jets, being a direct consequence of the radial flow interaction between jets. A correlation for average heat transfer is presented.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In