RESEARCH PAPERS: Heat Conduction

Inverse Determination of Boundary Conditions and Sources in Steady Heat Conduction With Heat Generation

[+] Author and Article Information
T. J. Martin, G. S. Dulikravich

Department of Aerospace Engineering, Pennsylvania State University, University Park, PA 16802

J. Heat Transfer 118(3), 546-554 (Aug 01, 1996) (9 pages) doi:10.1115/1.2822666 History: Received April 01, 1995; Revised March 01, 1996; Online December 05, 2007


A Boundary Element Method (BEM) implementation for the solution of inverse or ill-posed two-dimensional Poisson problems of steady heat conduction with heat sources and sinks is proposed. The procedure is noniterative and cost effective, involving only a simple modification to any existing BEM algorithm. Thermal boundary conditions can be prescribed on only part of the boundary of the solid object while the heat sources can be partially or entirely unknown. Overspecified boundary conditions or internal temperature measurements are required in order to compensate for the unknown conditions. The weighted residual statement, inherent in the BEM formulation, replaces the more common iterative least-squares (L2) approach, which is typically used in this type of ill-posed problem. An ill-conditioned matrix results from the BEM formulation, which must be properly inverted to obtain the solution to the ill-posed steady heat conduction problem. A singular value decomposition (SVD) matrix solver was found to be more effective than Tikhonov regularization for inverting the matrix. Accurate results have been obtained for several steady two-dimensional heat conduction problems with arbitrary distributions of heat sources where the analytic solutions were available.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In