RESEARCH PAPERS: Boiling and Condensation

Numerical Simulation of Saturated Film Boiling on a Horizontal Surface

[+] Author and Article Information
G. Son, V. K. Dhir

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095

J. Heat Transfer 119(3), 525-533 (Aug 01, 1997) (9 pages) doi:10.1115/1.2824132 History: Received September 03, 1996; Revised February 07, 1997; Online December 05, 2007


The past efforts in applying linear Taylor instability theory to the prediction of heat transfer during film boiling on a horizontal surface have suffered from the fact that empirical correlations must be used to define the shape of vapor-liquid interfaces and to determine the transport of mass and heat across these interfaces. The objective of this study is to clarify the physics of film boiling and to predict heat transfer coefficients through complete numerical simulation of the evolving interface between superposed layers of immiscible fluids. A coordinate transformation technique supplemented by a numerical grid generation method and a second-order projection method are combined to solve for the flow and temperature fields associated with an evolving interface. From the numerical simulation, the film thickness and, in turn, the heat transfer coefficient are found to vary both spatially and temporally. Increased wall superheat not only thickens the vapor film in the valley but also enlarges the vapor bulge. The effect of increased system pressure is to slow down the growth of the interface.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In