TECHNICAL PAPERS: Microscale Heat Transfer

Phonon Heat Conduction in Thin Films: Impacts of Thermal Boundary Resistance and Internal Heat Generation

[+] Author and Article Information
Taofang Zeng, Gang Chen

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597

J. Heat Transfer 123(2), 340-347 (Nov 21, 2000) (8 pages) doi:10.1115/1.1351169 History: Received February 23, 1999; Revised November 21, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Tien, C. L., Majumdar, A., and Gerner, F., 1998, Microscale Energy Transport, Taylor and Francis, New York.
Cahill,  D. G., Fischer,  H. E., Klitsner,  T., Swartz,  E. T., and Pohl,  R. O., 1988, “Thermal Conductivity of Thin Films: Measurements and Understanding,” J. Vac. Sci. Technol. A, 7, pp. 1259–1266.
Swartz,  E. T., and Pohl,  R. O., 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys., 61, pp. 605–668.
Majumdar,  A., 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME J. Heat Transfer, 115, pp. 7–16.
Chen,  G., and Tien,  C. L., 1993, “Thermal Conductivities of Quantum Well Structures,” J. Thermophys. Heat Transfer, 7, pp. 311–318.
Little,  W. A., 1959, “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” Can. J. Phys., 37, pp. 334–349.
Lee,  S.-M., and Cahill,  D. G., 1997, “Heat Transport in Thin Dielectric Films,” J. Appl. Phys., 81, pp. 2590–2595.
Goodson,  K. E., Flik,  M. I., Su,  L. T., and Antoniadis,  D. A., 1993, “Annealing-Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide Layers,” IEEE Electron Device Lett., 14, pp. 490–492.
Goodson,  K. E., Kading,  O. W., Rosler,  M., and Zachai,  R., 1995, “Experimental Investigation of Thermal Conduction Normal to Diamond-silicon Boundaries,” J. Appl. Phys., 77, pp. 1385–1392.
Chen,  G., 1998, “Thermal Conductivity and Ballistic-Phonon Transport in the Crossplane Direction of Superlattices,” Phys. Rev. B, 57, pp. 14958–14973.
Jen,  C.-P., and Chieng,  C.-C., 1998, “Microscale Thermal Characterization for Two Adjacent Dielectric Thin Films,” J. Thermophys. Heat Transfer, 12, pp. 146–152.
Gaze,  J., Oyanagi,  N., Yamamoto,  I., and Izawa,  H., 1998, “Laser Ablation Doping Process for the Synthesis of Conductive Diamond Thin Film,” Thin Solid Films, 322, pp. 28–32.
Min,  G., and Rowe,  D. M., 1999, “Cooling Performance of Integrated Thermoelectric Microcooler,” Solid-State Electron., 43, No. 5, pp. 923–929.
Chen,  G., 1997, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,” ASME J. Heat Transfer, 119, pp. 220–229.
Siegel, R., and Howell, J., 1993, Thermal Radiation Heat Transfer, Hemisphere, Washington, D.C.
Ziman, J. M., 1960, Electrons and Phonons, Clarendon Press, Oxford, England.
Shen,  P., and Zhou,  M., 1991, “Heat Conduction of Amorphous Solids: Simulation Results on Model Structure,” Science, 253, pp. 539–542.
Goodson,  K. E., 1996, “Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures,” ASME J. Heat Transfer, 118, pp. 279–286.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter, IFI/Plenum, New York.
Cahill,  D. G., and Pohl,  R. O., 1987, “Thermal Conductivity of Amorphous Solids Above the Plateau,” Phys. Rev. B, 35, pp. 4067–4072.
Shackelford, J. F., ed., 1994, CRC Materials Science and Engineering Handbook, 2nd Ed., CRC Press, Boca Raton, FL.
Brady, G. S., and Clauser, H. R., 1986, Materials Handbook, 20th Ed., McGraw-Hill, New York.
Morath,  C. J., Maris,  H. J., Cuomo,  J. J., Pappas,  D. L., Grill,  A., Patel,  V. V., Doyle,  J. P., and Saenger,  K. L., 1994, “Picosecond Optical Studies of Amorphous Diamond and Diamond-Like Carbon: Thermal Conductivity and Longitudinal Sound Velocity,” J. Appl. Phys., 76, pp. 2636–2640.


Grahic Jump Location
Schematic diagram of the film/substrate system, (a) a typical experimental configuration, and (b) physical model in this study. The upper surface is a black phonon emitter or an adiabatic surface.
Grahic Jump Location
Distribution of dimensionless temperature [Θ=Cν(T−Te)/4πq] as a function of dimensionless coordinate (z/h)
Grahic Jump Location
Thickness dependence of the thermal boundary resistance, (a) for diamond/Si, (b) for SiO2/Si
Grahic Jump Location
Thickness dependence of thermal conductivity, (a) and (b) for diamond/Si, (c) and (d) for SiO2/Si
Grahic Jump Location
Thickness dependence of TBR with and without internal heat generation
Grahic Jump Location
Distribution of dimensionless temperature as a function of dimensionless coordinate for diamond/Si. The temperatures are normalized to heat flux.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In