TECHNICAL PAPERS: Natural and Mixed Convection

Effects of a Magnetic Modulation on the Stability of a Magnetic Liquid Layer Heated From Above

[+] Author and Article Information
Saı̈d Aniss, Mohamed Belhaq

Faculté des Sciences Aı̈n chock, UFR de Mécanique, BP 5366 Maa⁁rif, Casablanca, Morocco

Mohamed Souhar

Lemta-Ensem, UMR 7563, 2 avenue de la Fore⁁t de Haye, BP 160, Vandoeuvre 54504, France

J. Heat Transfer 123(3), 428-433 (Jan 03, 2001) (6 pages) doi:10.1115/1.1370501 History: Received December 15, 1999; Revised January 03, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Berkovsky, B. M., 1978, Thermomechanics of Magnetic Fluids: Theory and Applications, Berkovsky Edition, Hemisphere, New York.
Bashtovoy, V. G., Berkovsky, B. M., and Vislovich, A. N., 1988, Introduction to Thermomechanics of Magnetic Fluids, Berkovsky Edition, Hemisphere, New York.
Finlayson,  B. A., 1970, “Convective Instability of Ferromagnetic Fluids,” J. Fluid Mech., 40, Part 4, pp. 753–767.
Shwab,  L., Hildebrandt,  U., and Stierstadt,  K., 1983, “Magnetic Bénard Convection,” J. Magn. Magn. Mater., 39, p. 113.
Stiles,  P. J., and Kagan,  M., 1990, “Thermoconvective Instability of a Horizontal Layer of Ferrofluid in a Strong Vertical Magnetic Field,” J. Magn. Magn. Mater., 85, pp. 196–198.
Rudraiah,  N., and Sekhar,  G. N., 1991, “Convection on Magnetic Fluids With Internal Heat Generation,” ASME J. Heat Transfer, 113, pp. 122–127.
Bashtovoy, V. G., and Berkovsky, B. M., 1973, “Thermomechanics of Ferromagnetic Fluids,” Magnitnaya Gidrodynamica, No. 3, pp. 3–14.
Zaitsev,  V. M., and Shliomis,  M. I., 1968, “The Hydrodynamics of a Ferromagnetic Fluid,” J. Appl. Mech. Tech. Phys., 9, No. 1, pp. 24–26.
Polevikov,  V. K., and Fertman,  V. E., 1977, “Investigation of Heat Transfer Through a Horizontal Layer of a Magnetic Liquid for the Cooling of Cylindrical Conductors With a Current,” Magnetohydrodynamics (N.Y.), 13, pp. 11–16.
Zebib,  A., 1996, “Thermal Convection in Magnetic Fluid,” J. Fluid Mech., 321, pp. 121–136.
Berkovsky,  B. M., Fertman,  V. E., Polevikov,  V. K., and Isaev,  S. V., 1976, “Heat Transfer Across Vertical Ferrofluid Layers,” Int. J. Heat Mass Transf., 19, pp. 981–986.
Aniss,  S., Souhar,  M., and Brancher,  J. P., 1993, “Thermal Convection In a Magnetic Fluid In an Annular Hele-Shaw Cell,” J. Magn. Magn. Mater., 122, pp. 319–322.
Souhar,  M., Aniss,  S., and Brancher,  J. P., 1999, “Convection de Rayleigh-Bénard Dans les Liquides Magnétiques en Cellule de Hele-Shaw Annulaire,” Int. J. Heat Mass Transf., 42, pp. 61–72.
Gresho,  P. M., and Sani,  R. L., 1970, “The Effects of Gravity Modulation On The Stability of a Heated Fluid Layer,” J. Fluid Mech., 40, pp. 783–806.
Biringen,  S., and Peltier,  L. J., 1990, “Numerical Simulation of 3-D Bénard Convection With Gravitational Modulation,” Phys. Fluids, A2, No. 5, pp. 754–764.
Clever,  R., Schubert,  G., and Busse,  F. H., 1993, “Two-dimensional Oscillatory Convection In a Gravitationally Modulated Fluid Layer,” J. Fluid Mech., 253, pp. 663–680.
Gershuni, G. Z., and Zhukhovitskii, E. M., 1976, Convective Instability of Incompressible Fluid, Keter Publisher, Jerusalem.
Shliomis, M., Brancher J. P., and Souhar, M., 1995, “Parametric Excitation in Magnetic Fluids Under a Time Periodic Magnetic Field,” Proceeding of the Seventh conference on Magnetic Fluids, Bhavnagar, India.
Aniss,  S., Souhar,  M., and Belhaq,  M., 2000, “Asymptotic Study of the Convective Parametric Instability in Hele-Shaw Cell,” Phys. Fluids, 12, (No. 2), pp. 262–268.
Brancher, J. P., 1980, Sur l’Hydrodynamique des Ferrofluides, Thèse D’état de l’INPL, Nancy.
Rosenweig, R. E., 1985, Ferrohydrodynamics, Cambridge University Press.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics, Part I, Mc Graw-Hill, New York, pp. 556–563.
Jordan, D. W., and Smith, P., 1987, Non Linear Ordinary Differential Equations, Oxford Clarendon Press, New York.
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London.


Grahic Jump Location
Free-Free case: Critical magnetic Rayleigh number, Rmoc, (solid line) and critical wave number, qc, (dashed line) versus the dimensionless frequency, Ω, for Pr=7,fm=10−4 and χo=∞. H: harmonic solutions. SH: subharmonic solutions.
Grahic Jump Location
Rigid-Rigid case: Stationary convection threshold of the unmodulated case: critical magnetic Rayleigh number, Rmc, versus the ratio of the magnetic and gravitational forces, M1o=3 (solid line), χo=100 (dashed line).
Grahic Jump Location
Rigid-Rigid case: Critical magnetic Rayleigh number, Rmoc, (solid line) and critical wave number, qc, (dashed line) versus the dimensionless frequency, Ω, for Pr=7,fm=10−4 and χo=3.H: harmonic solutions. SH: subharmonic solutions.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In