TECHNICAL PAPERS: Manufacturing Processes

Interface Shape and Thermally-Driven Convection in Vertical Bridgman Growth of Gallium Selenide: A Semiconductor With Anisotropic Solid-Phase Thermal Conductivity

[+] Author and Article Information
Hanjie Lee, Arne J. Pearlstein

Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801

J. Heat Transfer 123(4), 729-740 (Feb 02, 2001) (12 pages) doi:10.1115/1.1372194 History: Received August 29, 2000; Revised February 02, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Feigelson,  R. S., and Route,  R. K., 1990, “Improved Yield of Bridgman Grown AgGaSe2 Crystals using Shaped Crucibles,” J. Cryst. Growth, 104, pp. 789–792.
Feigelson,  R. S., and Route,  R. K., 1980, “Vertical Bridgman Growth of CdGeAs2 with Control of Interface Shape and Orientation,” J. Cryst. Growth, 49, pp. 261–273.
Prazak,  M., and Holecek,  S., 1995, “Directional Solidification of AlZn Eutectic in Microgravity Conditions,” Cryst. Res. Technol., 30, pp. 927–932.
McGhie,  A. R., and Sloan,  G. J., 1976, “Impurity Distribution in Organic Crystals I. The System Naphthalene/2-Chloronaphthalene,” J. Cryst. Growth, 32, pp. 60–67.
Lee,  H., and Pearlstein,  A. J., 2000, “Simulation of Vertical Bridgman Growth of Benzene, a Material with Anisotropic Solid-Phase Thermal Conductivity,” J. Cryst. Growth, 209, pp. 934–952.
Gau,  C., and Viskanta,  R., 1985, “Effect of Crystal Anisotropy on Heat Transfer During Melting and Solidification of a Metal,” ASME J. Heat Transfer, 107, pp. 706–708.
Weaver,  J. A., and Viskanta,  R., 1989, “Effects of Anisotropic Heat Conduction on Solidification,” Numer. Heat Transfer, 15A, pp. 181–195.
Huang,  C. E., Ewell,  D., and Feigelson,  R. S., 1983, “Influence of Thermal Conductivity on Interface Shape During Bridgman Growth,” J. Cryst. Growth, 64, pp. 441–447.
Lee,  H., and Pearlstein,  A. J., 2000, “Simulation of Radial Dopant Segregation in Vertical Bridgman Growth of Pyridine-Doped Benzene, a Surrogate for Binary Organic Nonlinear Optical Materials,” J. Cryst. Growth, 218, 354–352.
Kasriel, R. H., 1971, Undergraduate Topology, W. B. Saunders, Philadelphia, PA, p. 116.
Fernelius, N. C., Singh, N. B., Suhre, D. R., and Balakrishna, V., 1999, “Modified Gallium Selenide Crystals for High Power Nonlinear Optical Applications,” U.S. Patent 5,980,789, issued Nov. 9, 1999.
Fernelius,  N. C., Hopkins,  F. K., and Ohmer,  M. C. 1999, “Nonlinear Optical Crystal Development for Laser Wavelength Shifting at AFRL Materials Directorate,” in Operational Characteristics and Crystal Growth of Nonlinear Optical Materials, Proc. SPIE, 3793, SPIE, Bellingham, Wash. pp. 2–8.
Lieth, R. M. A., 1977, “III-VI Compounds,” in Preparation and Crystal Growth of Materials with Layered Structures, R. M. A. Lieth, ed., Reidel, Dordrecht, pp. 225–254.
Gouskov,  A., Camassel,  J., and Gouskov,  L., 1982, “Growth and Characterization of III-VI Layered Crystals like GaSe, GaTe, InSe, GaSe1−xTex and GaxIn1−xSe,” Prog. Cryst. Growth Charact., 5, pp. 323–413.
Maschke, K., and Lévy, F., 1983, “III-VI Compounds,” in Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Group III, 17f , O. Madelung, ed., Springer-Verlag, Berlin, pp. 9–102.
Fernelius,  N. C., 1994, “Properties of Gallium Selenide Single Crystal,” Prog. Cryst. Growth Charact. Mater., 28, pp. 275–353.
Holmes,  D. E., and Gatos,  H. C., 1981, “Convective Interference and ‘Effective’ Diffusion-Controlled Segregation during Directional Solidification under Stabilizing Vertical Temperature Gradients; Ge,” J. Electrochem. Soc., 128, pp. 429–437.
Chang,  C. J., and Brown,  R. A., 1983, “Radial Segregation Induced by Natural Convection and Melt/Solid Interface Shape in Vertical Bridgman Growth,” J. Cryst. Growth, 63, pp. 343–364.
Adornato,  P. M., and Brown,  R. A., 1987, “Convection and Segregation in Directional Solidification of Dilute and Non-dilute Binary Alloys: Effects of Ampoule and Furnace Design,” J. Cryst. Growth, 80, pp. 155–190.
Adornato,  P. M., and Brown,  R. A., 1987, “Petrov-Galerkin Methods for Natural Convection in Directional Solidification of Binary Alloys,” Int. J. Numer. Methods Fluids, 7, pp. 761–791.
Kim,  D. H., and Brown,  R. A., 1989, “Models for Convection and Segregation in the Growth of HgCdTe by the Vertical Bridgman Method,” J. Cryst. Growth, 96, pp. 609–627.
Kim,  D. H., and Brown,  R. A., 1991, “Modelling of the Dynamics of HgCdTe Growth by the Vertical Bridgman Method,” J. Cryst. Growth, 114, pp. 411–434.
Kuppurao,  S., Brandon,  S., and Derby,  J. J., 1995, “Modeling the Vertical Bridgman Growth of Cadmium Zinc Telluride: I. Quasi-Steady Analysis of Heat Transfer and Convection,” J. Cryst. Growth, 155, pp 93–102.
Liang,  M. C., and Lan,  C., 1996, “Three-Dimensional Convection and Solute Segregation in Vertical Bridgman Crystal Growth,” J. Cryst. Growth, 167, pp. 320–332.
Lan,  C. W., and Chen,  F. C., 1996, “A Finite Volume Method for Solute Segregation in Directional Solidification and Comparison with a Finite Element Method,” Comput. Methods Appl. Mech. Eng., 131, pp. 191–207.
Lan,  C. W., 1999, “Effects of Ampoule Rotation on Flows and Dopant Segregation in Vertical Bridgman Growth,” J. Cryst. Growth, 197, pp. 983–991.
Ma,  N., and Walker,  J. S., 2000, “A Model of Dopant Transport During Bridgman Crystal Growth with Magnetically Damped Buoyant Convection,” ASME J. Heat Transfer, 122, pp. 159–164.
Jandl,  S., Brebner,  J. L., and Powell,  B. M., 1976, “Lattice Dynamics of GaSe,” Phys. Rev. B, 13, pp. 686–693.
Bastow,  T. J., Campbell,  I. D., and Whitfield,  H. J., 1981, “A 69Ga,115In NQR Study of Polytopes of GaS, GaSe and InGe,” Solid State Commun., 39, pp. 307–311.
Cox,  E. G., Cruickshank,  D. W. J., and Smith,  J. A. S., 1958, “The Crystal Structure of Benzene at −3°C,” Proc. R. Soc. London, Ser. A, 247, pp. 1–21.
Guseinov,  G. D., Abdullayeva,  S. G., Ramazanzade,  A. M., Ismailov,  M. Z., Viscakas,  J. K., Vaitkus,  J. J., and Baltramiejūnas,  R. A., 1975, “Anisotropy of Lattice Heat Conductivity of Complex Chalcogenides,” Phys. Lett., 54A, pp. 378–380.
Tiller, W. A., 1963, “Principles of Solidification,” The Art and Science of Growing Crystals, J. J. Gilman, ed., Wiley, New York, pp. 276–342.
Huang,  C. E., Elwell,  D., and Feigelson,  R. S., 1984, “Computation of Stress in Bridgman Crystals,” J. Cryst. Growth, 69, pp. 275–280.
Abdullaev,  G. B., Abasova,  A. Z., Zaitov,  F. A., Lepnev,  L. S., Stafeev,  V. I., and Chkunina,  V. N., 1982, “Influence of Gamma and Neutron Irradiation on the Photoluminescence Spectra of p-type GaSe Single Crystals,” Sov. Phys. Semicond., 16, pp. 729.
Shigetomi,  S., Ikari,  T., and Nakashima,  H., 1993, “Optical and Electrical Properties of Layer Semiconductor p-GaSe Doped with Zn,” J. Appl. Phys., 74, pp. 4125–4129.
Lee,  W.-S., Kim,  N.-O., and Kim,  B.-I., 1996, “Optical Properties of GaSe:Er3+ Single Crystals,” J. Mater. Sci. Lett., 15, pp. 1644–1645.
Singh,  N. B., Suhre,  D. R., Rosch,  W., Meyer,  R., Marable,  M., Fernelius,  N. C., Hopkins,  F. K., Zelmon,  D. E., and Narayanan,  R., 1999, “Modified GaSe Crystals for Mid-IR Applications,” J. Cryst. Growth, 198/199, pp. 588–592.
Micocci,  G., Serra,  A., and Tepore,  A., 1997, “Electrical Properties of n-GaSe Single Crystals Doped with Chlorine,” J. Appl. Phys., 82, pp. 2365–2369.
Singh,  N. B., Narayanan,  R., Zhao,  A. X., Balakrishna,  V., Hopkins,  R. H., Suhre,  D. R., Fernelius,  N. C., Hopkins,  F. K., and Zelmon,  D. E., 1997, “Bridgman Growth of GaSe Crystals for Nonlinear Optical Applications,” Mater. Sci. Eng., B, 49, pp. 243–246.
Singh,  N. B., Suhre,  D. R., Balakrishna,  V., Marable,  M., Meyer,  R., Fernelius,  N., Hopkins,  F. K., and Zelmon,  D., 1998, “Far-Infrared Conversion Materials: Gallium Selenide for Far-Infrared Conversion Applications,” Prog. Cryst. Growth Charact. Mater., 37, pp. 47–102.
Anis,  M. K., 1981, “The Growth of Single Crystals of GaSe,” J. Cryst. Growth, 55, pp. 465–469.
Anis,  M. K., 1988, “Thermopower Measurements in p-GaSe Single Crystals Parallel and Perpendicular to the c-Axis,” Int. J. Electron., 65, pp. 215–221.
Segura,  A., Guesdon,  J. P., Besson,  J. M., and Chevy,  A., 1979, “Photovoltaic Effect in InSe. Application to Solar Energy Conversion,” Rev. Phys. Appl., 14, pp. 253–257.
Parfeniuk,  C., Weinberg,  F., Samarasekera,  I. V., Schvezov,  C., and Li,  L., 1992, “Measured Critical Resolved Shear Stress and Calculated Temperature and Stress Fields during Growth of CdZnTe,” J. Cryst. Growth, 119, pp. 261–270.
Brice, J. C., 1973, The Growth of Crystals from Liquids, North-Holland, Amsterdam, p. 209.
Cardetta,  V. L., Mancini,  A. M., and Rizzo,  A., 1972, “Melt Growth of Single Crystal Ingots of GaSe by Bridgman-Stockbarger’s Method,” J. Cryst. Growth, 16, pp. 183–185.
Sampaio,  H., Gouskov,  A., and Arguello,  Z. P., 1977, “Orientations of the Basal Plane of Single Crystals of GaSe Grown by Vertical Bridgman Technique,” J. Cryst. Growth, 41, pp. 275–277.
Shtanov,  V. I., Komov,  A. A., Tamm,  M. E., Atrashenko,  D. V., and Zlomanov,  V. P., 1998, “Phase Diagram of the Gallium-Selenium System and Photoluminescence Spectra of GaSe Crystals,” Dokl. Chem., 361, pp. 140–143.
Gouskov,  L., Gouskov,  A., Lemos,  V., May,  W., and Sampaio,  H., 1977, “Electrical Properties of GaTexSe1−x Crystals,” Phys. Status Solidi A, 39, pp. 65–71.
Sulewski,  P. E., Bucher,  E., Stücheli,  N., Oglesby,  C. S., Friemelt,  K., Vögt,  M., Baumann,  J. R., and Kloc,  C., 1992, “Search for Giant Franz-Keldysh-Like Effects in GaSe and Other Layered Semiconductors,” Appl. Phys. A, 54, pp. 79–83.
Sakai,  E., Nakatani,  H., Tatsuyama,  C., and Takeda,  F., 1998, “Average Energy Needed to Produce an Electron-Hole Pair in GaSe Nuclear Particle Detectors,” IEEE Trans. Nucl. Sci., 35, pp. 85–88.
Pfeiffer,  M., and Mülhberg,  M., 1992, “Interface Shape Observation and Calculation in Crystal Growth of CdTe by the Vertical Bridgman Method,” J. Cryst. Growth, 118, pp. 269–276.
Lan,  C. W., and Ting,  C. C., 1996, “A Study of the Interface Control of Vertical Bridgman Crystal Growth using a Transparent Multizone Furnace,” Chem. Eng. Commun., 145, pp. 131–143.
Zhang,  H., Zheng,  L. L., Prasad,  V., and Larson,  D. J., 1998, “Local and Global Simulations of Bridgman and Liquid-Encapsulated Czochralski Crystal Growth,” ASME J. Heat Transfer, 120, pp. 865–873.
Anis,  M. K., and Piercy,  A. R., 1977, “Growth of Single Crystals of GaSe with Natural Facets at Large Angles to the Layers,” Phys. Status Solidi A, 44, pp. K5–K6.
Glazov, V. M., Makhmudov, S., and Mavlonov, S., 1972, “Thermal Expansion and Volume Changes During the Melting of Gallium and Indium Selenides” (translated), Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk, No. 1, pp. 20–24.
Suzuki,  H., and Mori,  R., 1974, “Phase Study on Binary System Ga-Se,” Jpn. J. Appl. Phys., 13, pp. 417–423.
Dieleman,  J., Sanders,  F. H. M., and van Dommelen,  J. H. J., 1982, “The Phase Diagram of the Ga-Se System,” Philips J. Res., 37, pp. 204–229.
Dieleman,  J., and Engelfriet,  R. G., 1971, “The Phase Diagram of the System Ga1−xSex for 0.5≤x≤0.6 and 300 K≤T≤1500 K,” J. Less-Common Met., 25, pp. 231–233.
Zavrazhnov,  A. Y., Turchen,  D. N., Goncharov,  E. G., and Prigorodova,  T. A., 1999, “Scanning of T-X Projections of Phase Microdiagrams based on Data on Gas Solubility in Melts. Homogeneity Area of GaSe at Premelting Temperatures,” Russ. J. Gen. Chem., 69, pp. 1692–1697.
Fedorov,  V. I., and Machuev,  V. I., 1972, “Thermal Conductivity of Selenium and of Indium and Gallium Selenides in the Liquid and Solid States,” Sov. Phys. Semicond., 6, pp. 142–144.
Glazov, V. M., Makhmudov, S., and Mavlonov, S., 1978, “Temperature Dependence of the Viscosity of Gallium and Indium Selenides” (translated), Elektricheskie Svoistva Slozhnykh Poluprovodnikov i Kristallov, S. M. Mavlonov and R. A. Karieva, eds., Donish, Dushanbe, pp. 28–41.
Takeda,  S., Okazaki,  H., and Tamaki,  S., 1982, “Specific Heat of Liquid In-Te Alloys,” J. Phys. C, 15, pp. 5203–5210.
Takeda,  S., Tamaki,  S., Takano,  A., and Okazaki,  H., 1983, “Specific Heat of Liquid Ga-Te Alloys,” J. Phys. C, 16, pp. 467–471.
Mills,  K. C., 1976, “Molar Heat Capacities and Enthalpies of Transition for InSe(c), InSe1.2 and In2Se3,” High Temp.-High Press., 8, pp. 225–230.
Mamedov,  K. K., Kerimov,  I. G., Kostryukov,  V. N., and Mekhtiev,  M. I., 1967, “Specific Heat of Gallium Selenide and Thallium Selenide,” Sov. Phys. Semicond., 1, pp. 363–364.
Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J., 1961, Handbook of Thermophysical Properties of Solid Materials, Vol. III, Ceramics, Macmillan, New York, pp. 891–896.
Lewis, G. N., and Randall, M., 1961, Thermodynamics, 2nd ed., revised by K. S. Pitzer and L. Brewer, McGraw-Hill, New York.
Singh,  N. B., Henningsen,  T., Balakrishna,  V., Suhre,  D. R., Fernelius,  N., Hopkins,  F. K., and Zelmon,  D. E., 1996, “Growth and Characterization of Gallium Selenide Crystals for Far-Infrared Conversion Applications,” J. Cryst. Growth, 163, pp. 398–402.
Manfredotti,  C., Murri,  R., Rizzo,  A., Galassini,  S., and Ruggiero,  L., 1974, “Deep Hole Traps in p-type GaSe Single Crystals,” Phys. Rev. B, 10, pp. 3387–3393.
Nakatani,  H., Sakai,  E., Tatsuyama,  C., and Takeda,  F., 1989, “GaSe Nuclear Particle Detectors,” Nucl. Instrum. Methods Phys. Res. A, 283, pp. 303–309.
Rizzo,  A., DeBlasi,  C., Catalano,  M., and Cavaliere,  P., 1988, “Dislocations in AIIIBVI Single Crystals,” Phys. Status Solidi A, 105, pp. 101–112.
De Blasi,  C., Manno,  D., and Rizzo,  A., 1989, “Convergent-Beam Electron Diffraction Study of Melt- and Vapour-Grown Single Crystals of Gallium Chalcogenides,” Il Nuovo Cimento, 11D, pp. 1145–1163.
Manfredotti,  C., Mancini,  A. M., Murri,  R., Rizzo,  A., and Vasanelli,  L., 1977, “Electrical Properties of p-Type GaSe,” Il Nuovo Cimento, 39B, pp. 257–268.
Lendvay,  E., Kuhn,  A., Chevy,  A., and Ceva,  T., 1971, “Dislocation Etching of GaSe Single Crystals,” J. Mater. Sci., 6, pp. 305–308.
Rustamov,  P. G., Melikova,  Z. D., Nasirov,  Y. N., and Alidzhanov,  M. A., 1969, “Preparation of Single Crystals of Solid Solutions of Alloys of the System GaS-GaSe and Study of Their Physical Properties,” Inorg. Mater., 5, pp. 750–752.
Guseinov,  G. D., and Rasulov,  A. I., 1966, “Heat Conductivity Study of GaSe Monocrystals,” Phys. Status Solidi, 18, pp. 911–922.
Brandon  S., and Derby,  J. J., 1992, “Heat Transfer in Vertical Bridgman Growth of Oxides: Effects of Conduction, Convection, and Internal Radiation,” J. Cryst. Growth, 121, pp. 473–494.
Rustamov,  P. G., Il’yasov,  T. M., Safarov,  M. G., and Sadykhova,  S. A., 1979, “Projection of the Liquidus of the As, Ga∥Se, Te System,” Russ. J. Inorg. Chem., 24, pp. 263–266.
Il’yasov,  T. M., and Rustamov,  P. G., 1982, “Chemical Interaction and Glass Formation in Chalcogenide Systems of the As2X3-GaX Type,” Russ. J. Inorg. Chem., 27, pp. 1500–1503.
Rustamov,  P. G., Melikova,  Z. D., Safarov,  M. G., and Alidzhanov,  M. A., 1965, “Solid Solutions in the System GaS-GaSe,” Inorg. Mater., 1, pp. 387–389.
Rustamov,  P. G., Babaeva,  B. K., and Luzhnaya,  N. P., 1965, “The Interaction of Gallium with Selenium,” Inorg. Mater., 1, pp. 775–776.
Muschinsky,  W. P., and Pawelenko,  N. M., 1969, “Untersuchung des Systems GaSe-InSe,” Krist. Tech., 4, No. 2, pp. K5–K7.
Palatnik,  L. S., and Belova,  E. K., 1996, “Investigation of the Ga-Se Phase Diagram,” Inorg. Mater., 2, pp. 657–659.
Kumar,  S., and Singh,  R. N., 1995, “Thermal Conductivity of Polycrystalline Materials,” J. Am. Ceram. Soc., 78, pp. 728–736.
Parfeniev,  R. V., Farbshtein,  I. I., Shulpina,  I. L., Yakimov,  S. V., Shalimov,  V. P., Turchaninov,  A. M., Ivanov,  A. I., and Savin,  S. F., 2000, “Solidification of Anisotropic Semiconducting Material—Tellurium under Microgravity Conditions,” Mater. Sci. Forum, 329/330, pp. 297–304.
Batur,  C., Srinivasan,  A., Duval,  W. M. B., and Singh,  N. B., 1995, “Control of Crystal Growth in Bridgman Furnace,” Prog. Cryst. Growth Charact. Mater., 30, pp. 217–236.


Grahic Jump Location
Schematic of vertical Bridgman growth with imposed ampoule-wall temperature distribution Tb(z)
Grahic Jump Location
Isotherms and streamlines for dTb(0)/dz=30°C cm−1. (a) U=0.25 μm sec−1 : ψmin=−0.0261,ψmax=0.0432; (b) U=1.0 μm sec−1 : ψmin=−0.0253,ψmax=0.0708; and (c) U=3.0 μm sec−1 : ψmin=−0.0233,ψmax=0.116.
Grahic Jump Location
Interface shapes for dTb(0)/dz=30°C cm−1.U=0.25 μm sec−1 , Δz/ri=0.120;U=0.50 μm sec−1 , Δz/ri=0.152;U=1.0 μm sec−1 , Δz/ri=0.215;U=3.0 μm sec−1 , Δz/ri=0.437.
Grahic Jump Location
Isotherms and streamlines for dTb(0)/dz=60°C cm−1, with L1=30 and L2=8. (a) U=0.25 μm sec−1 : ψmin=−0.0608,ψmax=0.0490; (b) U=1.0 μm sec−1 : ψmin=−0.0598,ψmax=0.0704; and (c) U=3.0 μm sec−1 : ψmin=−0.0572,ψmax=0.117.
Grahic Jump Location
Interface shapes for dTb(0)/dz=60°C cm−1.U=0.25 μm sec−1 , Δz/ri=0.102;U=0.50 μm sec−1 , Δz/ri=0.117;U=1.0 μm sec−1 , Δz/ri=0.150;U=3.0 μm sec−1 , Δz/ri=0.275.
Grahic Jump Location
Isotherms and streamlines for dTb(0)/dz=30°C cm−1,U=0.25 μm sec−1 , with Tc=900°C,Th=1050°C, and TM=937°C:ψmin=−0.0292,ψmax=0.0538.
Grahic Jump Location
Interface shapes for dTb(0)/dz=30°C cm−1, with Tc=900 °C,Th=1050°C, and TM=937°C.U=0.25 μm sec−1 , Δz/ri=0.146;U=0.50 μm sec−1 , Δz/ri=0.190;U=1.0 μm sec−1 , Δz/ri=0.274;U=3.0 μm sec−1 , Δz/ri=0.563.
Grahic Jump Location
Isotherms and streamlines for a fictitious material with isotropic solid-phase conductivity kiso=tr(ks)/3 and dTb(0)/dz=30°C cm−1. (a) U=0.25 μm sec−1 : ψmin=−0.0712,ψmax=0.893×10−4; (b) U=1.0 μm sec−1 : ψmin=−0.0507,ψmax=0.0; and (c) U=3.0 μm sec−1 : ψmin=−0.0572,ψmax=0.117.
Grahic Jump Location
Interface shapes for dTb(0)/dz=30°C cm−1 for a fictitious material with isotropic solid-phase thermal conductivity kiso=tr(ks)/3 and dTw(0)/dz=30°C cm−1.U=0.25 μm sec−1 , Δz/ri=−0.177;U=0.50 μm sec−1 , Δz/ri=−0.159;U=1.0 μm sec−1 , Δz/ri=−0.125;U=3.0 μm sec−1 , Δz/ri=4.9×10−3.
Grahic Jump Location
Isohterms and streamlines for localized ampoule-wall heating with χ=−0.1,z0/ri=−0.05,σ=2, and λ=0.4 cm−1 , corresponding to dTb(0)/dz=30°C cm−1 when χ=0. (a) U=0.25 μm sec−1 : ψmin=−0.0515,ψmax=0.0387; (b) U=0.5 μm sec−1 : ψmin=−0.0481,ψmax=0.0389; and (c) U=1.0 μm sec−1 : ψmin=−0.0425,ψmax=0.0402.
Grahic Jump Location
Interface shapes (below) for localized ampoule-wall heating with χ=0.1,σ=2,z0/ri=−0.05, and λ=0.4 cm−1 (corresponding to dTb(0)/dz=30°C cm−1 when χ=0).U=0.25 μm sec−1 , Δz/ri=0.080;U=0.50 μm sec−1 , Δz/ri=0.106;U=1.0 μm sec−1 , Δz/ri=0.156. Upper curves are for χ=0:U=0.25 μm sec−1 , Δz/ri=0.120;U=0.50 μm sec−1 , Δz/ri=0.152;U=1.0 μm sec−1 , Δz/ri=0.215.
Grahic Jump Location
Isotherms and streamlines for zero g at dTb(0)/dz=30°C cm−1,U=1.0 μm sec−1 : ψmin=−7.79×10−5max=−5.09×10−8.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In