TECHNICAL PAPERS: Microscale Heat Transfer

Molecular Dynamics Simulation of Nanodroplet Evaporation

[+] Author and Article Information
J. H. Walther, P. Koumoutsakos

Institute of Computational Sciences, ETH Zentrum, Weinbergstrasse 43, CH-8092 Zürich, Switzerland

J. Heat Transfer 123(4), 741-748 (Nov 20, 2000) (8 pages) doi:10.1115/1.1370517 History: Received September 10, 1999; Revised November 20, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Glassman,  I., 1994, “A Look Forward: The Next 25 Years,” Combust. Sci. Technol., 98, pp. 217–222.
Brezinsky,  K., 1994, “The Next Twenty Five Years of Combustion Research: One Researcher’s Perspective,” Combust. Sci. Technol., 98, pp. 237–243.
Sirignano,  W. A., 1993, “Fluid Dynamics of Sprays—1992 Freeman Scholar Lecture,” J. Fluids Eng., 115, pp. 345–378.
Aggarwal,  S. K., and Peng,  F., 1995, “A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations,” ASME J. Eng. Gas Turbines Power, 117, pp. 453–461.
Kuo, K. K.-Y., 1986, Principles of Combustion, John Wiley & Sons, New York.
Shuen,  J. S., Yang,  V., and Hsiao,  C. C., 1992, “Combustion of Liquid-Fuel Droplets in Supercritical Conditions,” Combust. Flame, 89, pp. 299–319.
Yang,  V., Lin,  N. N., and Shuen,  J.-S., 1994, “Vaporization of Liquid Oxygen (LOX) Droplets in Supercritical Hydrogen Environments,” Combust. Sci. Technol., 97, pp. 247–270.
Protsenko,  S. P., and Skripov,  V. P., 1977, “Molecular-Dynamics Calculation of Thermodynamic Properties and Structure System of Liquid Argon Nuclei,” Sov. J. Low Temp. Phys., 3, No. 1, pp. 1–4.
Rusanov,  A. I., and Brodskaya,  E. N., 1977, “The Molecular Dynamics Simulation of a Small Drop,” J. Colloid Interface Sci., 62, No. 3, pp. 542–555.
Powles,  J. G., Fowler,  R. F., and Evans,  W. A. B., 1983, “A New Method for Computing Surface Tension Using a Drop of Liquid,” Chem. Phys. Lett., 96, No. 3, pp. 289–292.
Thompson,  S. M., Gubbins,  K. E., Walton,  J. P. R. B., Chantry,  R. A. R., and Rowlinson,  J. S., 1984, “A Molecular Dynamics Study of Liquid Drops,” J. Chem. Phys., 81, No. 1, pp. 530–542.
Yasuoka,  K., Matsumoto,  M., and Kataoka,  Y., 1994, “Evaporation and Condensation at a Liquid Surface of Argon,” J. Chem. Phys., 101, No. 9, pp. 7904–7911.
Matsumoto,  M., 1996, “Molecular Dynamics of Liquid Surfaces,” Mol. Simul., 16, pp. 209–217.
Zhakhovskiı̌,  V. V., and Anisimov,  S. I., 1997, “Molecular-Dynamics Simulation of Evaporation of a Liquid,” JETP, 84, No. 4, pp. 734–745.
Rytkönen,  A., Valkealahti,  S., and Manninen,  M., 1997, “Melting and Evaporation of Argon Clusters,” J. Chem. Phys., 106, No. 5, pp. 1888–1892.
Long,  L. N., Micci,  M. M., and Wong,  B. C., 1996, “Molecular Dynamics Simulations of Droplet Evaporation,” Comput. Phys. Commun., 96, pp. 167–172.
Little, J. K., 1996, “Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics,” Ph.d. thesis, The Pennsylvania State University.
Kaltz,  T. L., Long,  L. N., Micci,  M. M., and Little,  J. K., 1998, “Supercritical Vaporization of Liquid Oxygen Droplets Using Molecular Dynamics,” Combust. Sci. Technol., 136, pp. 279–301.
Svanberg,  M., Marković,  N., and Petterson,  J. B. C., 1998, “Collision Dynamics of Large Water Clusters,” J. Chem. Phys., 108, No. 14, pp. 5888–5897.
Sikdar,  S., and Chung,  J. N., 1997, “A Quasimolecular Approach for Discrete Study of Droplet Collision,” Int. J. Comput. Fluid Dyn., 8, pp. 189–200.
Murad,  S., and Law,  C. K., 1999, “Molecular Simulation of Droplet Collision in the Presence of Ambient Gas,” Mol. Phys., 96, No. 1, pp. 81–85.
Ashurst,  W. T., and Holian,  B. L., 1999, “Droplet Size Dependence Upon Volume Expansion Rate,” J. Chem. Phys., 111, No. 6, pp. 2842–2843. (Letters to the Editor).
Grönbeck,  H., Tománek,  D., Kim,  S. G., and Rosén,  A., 1997, “Does Hydrogen Pre-Melt Palladium Clusters?,” Chem. Phys. Lett., 264, pp. 39–43.
Westergren,  J., Grönbeck,  H., Kim,  S.-G., and Tománek,  D., 1997, “Noble Gas Temperature Control of Metal Clusters: A Molecular Dynamics Study,” J. Chem. Phys., 107, No. 8, pp. 3071–3079.
Verlet,  L., 1967, “Computer Experiments on Classical Fluids,” Phys. Rev., 159, pp. 98–103.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford.
Grest,  G. S., and Dünweg,  B., 1989, “Vectorized Link Cell FORTRAN Code for Molecular Dynamics Simulations for a Large Number of Particles,” Comput. Phys. Commun., 55, pp. 269–285.
Plimpton,  S., 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117, pp. 1–19.
Samet, H., 1989, The Design and Analysis of Spatial Data Structures, Addison-Wesley Publishing Company.
Cottet, G.-H., and Koumoutsakos, P., 2000, Vortex Methods: Theory and Practice, Cambridge University Press, New York.
Salmon,  J. K., and Warren,  M. S., 1993, “Skeletons From the Treecode Closet,” J. Chem. Phys., 111, pp. 136–155.
Rabinovich, V. A., Vasserman, A. A., Nedostup, V. I., and Veksler, L. S., 1988, Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Hemisphere.
Reynolds, W. C., 1979, Thermodynamic Properties in SI, Stanford University.
Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., 1967, Molecular Theory of Cases and Liquids, 4th ed., John Wiley & Sons, New York.
Mecke,  M., Winkelmann,  J., and Fischer,  J., 1997, “Molecular Dynamics Simulation of the Liquid-Vapor Interface: The Lennard-Jones Fluid,” J. Chem. Phys., 107, No. 21, pp. 9264–9270.
Margerit,  J., and Sero-Guillaume,  O., 1996, “Study of the Evaporation of a Droplet in Its Stagnant Vapor by Asymptotic Matching,” Int. J. Heat Mass Transf., 39, No. 18, pp. 3887–3898.


Grahic Jump Location
Sketch of computational domain and heating element
Grahic Jump Location
Example of a two-dimensional tree created for 16 atoms and allowing one particle per box
Grahic Jump Location
Example of colleagues of boxes in the two-dimensional tree created for the 16 atoms shown in Fig. 2. The colleagues of the filled boxes are marked with an ×.
Grahic Jump Location
Example of neighbors of boxes in the two-dimensional tree created for the 16 atoms shown in Fig. 2. The neighbors of the filled boxes are marked with an ×. The interactions of the particles in the two (filled) neighboring boxes are computed at the level of the larger box (left) utilizing the symmetry of Eq. (4).
Grahic Jump Location
Atoms in neighboring boxes are stored in consecutive memory locations to allow efficient computations using Morton ordering
Grahic Jump Location
Droplet density and temperature profiles during accommodation and evaporation of the 5768 atom droplet (Case E01). (—: τ*=25; – – –: τ*=30; - - -: τ*=100)
Grahic Jump Location
Convergence of the density and temperature profiles as function of the cutoff radius for the 5768 droplet at τ*=200. —: rc/σ=2.5 (Case E01); –––: rc/σ=5.0 (Case E02); - - -: rc/σ=10.0 (Case E03)
Grahic Jump Location
Evaporation curve for the 5768 droplet. +: E01 (rc/σ=2.5); ×: E02 (rc/σ=5.0);* : E03 (rc/σ=10.0); □: E05 (rc/σ=2.5); —: Theory.
Grahic Jump Location
Density and temperature profiles during evaporation for the 5867 atom droplet (Case E02). —: τ*=100; –––: τ*=200; - - -: τ*=300.
Grahic Jump Location
Time history of the 5867 atom droplet during evaporation (Case E02) (vapor not shown). From left to right: τ*=100, 200, and 300.
Grahic Jump Location
Evaporation curve for the 22360 atom droplet. +: E06; —: Theory.
Grahic Jump Location
Time history of the 22360 atom droplet during evaporation (vapor not shown). From left to right: τ*=100, 300, and 500.
Grahic Jump Location
Evaporation curve for the 51104 atom droplet. +: E07; —: Theory.
Grahic Jump Location
Time history of the 51104 droplet during evaporation. From left to right: τ*=100, 400, and 700.
Grahic Jump Location
Evaporation rate. —: 5678 atom droplet; –––: 22310 atom droplet; - - -: 51104 atom droplet.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In