TECHNICAL PAPERS: Forced Convection

Numerical Study of Steady Forced Convection in a Grooved Annulus Using a Design of Experiments

[+] Author and Article Information
Yannick Sommerer, Guy Lauriat

University of Marne-la-Vallée, Cité Descartes, Bldg. Lavoisier, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2

J. Heat Transfer 123(5), 837-848 (Feb 09, 2001) (12 pages) doi:10.1115/1.1388299 History: Received May 23, 2000; Revised February 09, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Gazley,  C., 1958, “Heat-Transfer Characteristics of the Rotational and Axial Flow Between Concentric Rotating Cylinders,” Trans. ASME, 80, pp. 79–90.
Tachibana,  F., and Fukui,  S., 1964, “Convective Heat Transfer on the Rotational and Axial Flow Between Two Concentric Cylinders,” Bull. JSME, 7, pp. 385–391.
Yamada,  Y., 1962, “Torque Resistance of a Flow Between Rotating Coaxial Cylinders Having Axial Flow,” Bulletin JSME, 5, No. 5, pp. 634–642.
Lee,  Y. N., and Minkowycz,  W. J., 1989, “Heat Transfer Characteristics of the Annulus of Two Coaxial Cylinders With One Cylinder Rotating,” Int. J. Heat Mass Transf., 32, pp. 711–722.
Murphy,  J. Y., and Patankar,  S. V., 1983, “Numerical Study of Heat Transfer From a Rotating Cylinder With External Longitudinal Fins,” Numer. Heat Transfer, 6, No. 4, pp. 463–473.
Hayase,  T., Humphrey,  J. A. C., and Greif,  R., 1992, “Numerical Calculations of Convective Heat Transfer Between Rotating Coaxial Cylinders With Periodically Embedded Cavities,” ASME J. Heat Transfer, 114, pp. 589–596.
Ziouchi, A., 1996, “Contribution à l’analyze et à la modélisation des échanges convectifs dans un entrefer de moteur électrique fermé”, Ph.D. thesis, Université de Poitiers, France.
Sommerer, Y., Lauriat, G., and Desrayaud, G., 1999, “Convection forcée dans l’entrefer rainuré d’un moteur électrique,” Proceedings of the SFT 99 Conference, Elsevier, Paris, pp. 185–190.
Pecheux, J., Bousgarbies, J. L., and Bellenoue, M., 1997, “Instabilité de Taylor entre un cylindre lisse tournant et un cylindre fixe encoché,” C. R. Acad. Sci Paris, série II b, pp. 159–163.
Bouafia,  M., Ziouchi,  A., Bertin,  Y., and Saulnier,  J. P., 1999, “Etude expérimentale et numérique des transferts de chaleur en espace annulaire sans débit axial et avec cylindre intérieur tournant,” Int. J. Therm. Sci, 38, pp. 547–559.
Gardiner,  S. R., and Sabersky,  R. H., 1978, “Heat Transfer in an Annular Gap,” Int. J. Heat Mass Transf., 21, pp. 1459–1466.
Alziary de Roquefort,  T., and Grillaud,  G., 1978, “Computation of Taylor Vortex Flow by a Transient Implicit Method,” Comput. Fluids, 6, pp. 259–269.
Taylor,  G. I., 1923, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philos. Trans. R. Soc. London, Ser. A, 233, pp. 289–343.
Marcus,  P. S., 1984, “Simulation of Taylor-Couette Flow: Part1—Numerical Methods and Comparison With Experiment,” J. Fluid Mech., 146, pp. 45–64.
Yates,  F., 1935, “Complex Experiments,” J. R. Statist. Soc. Suppl., 2, pp. 181.


Grahic Jump Location
Definition of the geometry
Grahic Jump Location
Comparison of mean Nusselt number with experimental results and numerical predictions 10
Grahic Jump Location
Flow regimes and variations of Tac versus the axial aspect ratio
Grahic Jump Location
Iso-uθ[0(0.1)1] near the first transition in the plane I for A=20
Grahic Jump Location
Variation of the mean friction coefficient with the axial aspect ratio for Ta=300 (three-dimensional computations).
Grahic Jump Location
Local Nusselt number and friction coefficient along the inner cylinder for Ta=1300
Grahic Jump Location
Isothermal patterns [0(0.1)1] for various configurations of cross sections with R=1.0526 and at Ta=1000: (a) Rg=1.20,θp=30 deg,θg=10 deg (b) Rg=1.02,θp=30 deg,θg=10 deg (c) Rg=1.20,θp=30 deg,θg=24 deg; and (d) Rg=1.20,θp=120 deg,θg=10 deg
Grahic Jump Location
Variations of Cf and Nu versus Ta for different radius ratios
Grahic Jump Location
Variation of the tangential velocity-component for Ta=100 versus the curvature function: (a) R=1.007; and (b) R=1.11
Grahic Jump Location
Variations of the mean Nusselt number: (a) Nu versus Ta for various Rg; and (b) Nu versus Rg for various Ta
Grahic Jump Location
Variations of Cf and Nu versus Ta for various θp
Grahic Jump Location
Variations of Cf and Nu versus Ta for various θg
Grahic Jump Location
Comparisons between calculations and correlation about the mean friction coefficient: (a) Cf versus R; (b) Cf versus Rg; (c) Cf versus θp; (d) Cf versus θg; and (e) Cf versus Ta.
Grahic Jump Location
Comparison between calculations and correlation about the mean Nusselt number: (a) Nu versus R; (b) Nu versus Rg; (c) Nu versus θp; (d) Nu versus θg



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In