TECHNICAL PAPERS: Radiative Heat Transfer

The Zone Method: A New Explicit Matrix Relation to Calculate the Total Exchange Areas in Anisotropically Scattering Medium Bounded by Anisotropically Reflecting Walls

[+] Author and Article Information
J. M. Goyhénèche

Commissariat à l’Energie Atomique-Le Ripault, BP 16, F 37260 Monts, France

J. F. Sacadura

Centre de Thermique de Lyon, UMR CNRS 5008, F 69621 Villeubrbanne Cedex, France

J. Heat Transfer 124(4), 696-703 (Jul 16, 2002) (8 pages) doi:10.1115/1.1481359 History: Received March 30, 2001; Revised February 28, 2002; Online July 16, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Hottel, H. C., and Sarofim, A. F., 1967, Radiative Transfer, McGraw-Hill, New York.
Olsommer,  B., von Spakovsky,  M., and Favrat,  D., 1997, “Transfert de chaleur par rayonnement dans un four d’incinération industriel: application de la méthode des zones,” Revue Générale de Thermique, 36, pp. 125–134.
Noble,  J. J., 1975, “The Zone Method: Explicit Matrix Relations for Total Exchange Areas,” Int. J. Heat Mass Transf., 18, pp. 261–269.
Tan,  H. P., and Lallemand,  M., 1989, “Transcient Radiative-Conductive Heat Transfer in Flat Glasses Submitted to Temperature, Flux and Mixed Boundary Conditions,” Int. J. Heat Mass Transf., 32, pp. 795–810.
Tan,  H. P., Wang,  P. Y., and Xia,  X. L., 2000, “Transcient Coupled Radiation and Conduction in an Absorbing and Scattering Composite Layer,” J. Thermophys. Heat Transfer, 14, pp. 77–87.
Byun,  K. H., and Smith,  T. F., 1988, “Development of the Zone Method for Linearly Anisotropic Scattering Media,” Journal of Quantitative Spectroscopy and Radiative Transfer, 34, pp. 591–604.
Yuen,  W. W., and Takara,  E. E., 1994, “Development of a Generalized Zonal Method for the Analysis of Radiative Transfer in Absorbing and Anisotropically Scattering Media,” Numer. Heat Transfer, Part B, 25, pp. 75–96.
Ma,  A. K., 1995, “Generalized Zoning Method in One-Dimensional Participating Media,” ASME J. Heat Transfer, 117, pp. 520–523.
Goyhénèche, J. M., 1997, “Modélisation et caractérisation thermique à très haute température de matériaux poreux en carbone destinés à l’isolation thermique des corps de rentrée dans l’atmosphère,” Ph.D. thesis, Institut National des Sciences Appliquées, order No 97ISAL0043, Lyon.
Becker,  H. B., 1977, “A Mathematical Solution for Gas-to-Surface Radiative Exchange Area for a Rectangular Parallelepiped Enclosure Containing a Gray Medium,” ASME J. Heat Transfer, 99, pp. 203–207.
Vercamen,  H. A. J., and Froment,  G. F., 1980, “An Improved Zone Method Using Monte-Carlo Techniques for the Simulation of Radiation in Industrial Furnaces,” Int. J. Heat Mass Transf., 23, pp. 329–337.
Kim,  T. K., and Smith,  T. F., 1985, “Radiative and Conductive Transfer for a Real Gas in a Cylindrical Enclosure With Gray Walls,” Int. J. Heat Mass Transf., 28, pp. 2268–2277.
Tucker,  R. J., 1986, “Direct Exchange Areas for Calculating Radiation Transfer in Rectangular Furnaces,” ASME J. Heat Transfer, 108, pp. 707–710.
Kheiri, A., Tanguier, J. L., Bour, D., Mainard, R., and Kleinclauss, J., 1990, “Transfert de chaleur dans les milieux semi-transparents: adaptation de la méthode des zones de Hottel aux milieux optiquement épais,” Proceedings SFT-90 Conference, Nantes, pp. 37–40.
Naraghi,  M. H. N., and Chung,  B. T. F., 1985, “A Unified Matrix Formulation for the Zone Method: A Stochastic Approach,” Int. J. Heat Mass Transf., 28, pp. 245–251.
Dayan,  A., and Tien,  C. L., 1975, “Heat Transfer in a Gray Planar Medium With Linear Anisotropic Scattering,” ASME J. Heat Transfer, 97, pp. 391–397.
Yuen,  W. W., and Tien,  C. L., 1980, “A Successive Approximation Approach to Problems in Radiative Transfer With Differential Formulation,” ASME J. Heat Transfer, 102, pp. 86–91.
Bleach,  H. L., Ozisik,  M. N., and Siewert,  C. E., 1971, “Radiative Transfer in Linearly-Anisotropic-Scattering, Conservative and Non-Conservative Slabs With Reflective Boundaries,” Int. J. Heat Mass Transf., 14, pp. 1551–1565.
Busbridge,  I. W., and Orchard,  S. E., 1967, Astrophys. J., 149, p. 655.
Sutton,  W. H., and Ozisik,  M. N., 1979, “An Iterative Solution for Anisotropic Radiative Transfer in a Slab,” ASME J. Heat Transfer, 101, pp. 695–698.


Grahic Jump Location
Difference in surface-volume direct exchange area (DEA) definitions: (a) as defined by Hottel and Sarofin 1 Eq. (2) or by Yuen and Takara 7 Eq. (4); (b) as defined by Kheiri et al. 14 Eq. (3)
Grahic Jump Location
Direct exchange area (DEA) as defined in this work Eq. (5): (a) surface-surface DEA; (b) surface-volume DEA; and (c) volume-volume DEA
Grahic Jump Location
(siskgj) reflective indirect exchange area (IEA)
Grahic Jump Location
(sigkgj) scattering indirect exchange area (IEA)
Grahic Jump Location
Application: purely anisotropic scattering layer bounded by black walls



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In