Mahan,
G., Sales,
B., and Sharp,
J., 1997, “Thermoelectric materials: New Approaches to an Old Problem,” Phys. Today, 50, pp. 42–47.

Dresselhaus,
M. S., Dresselhaus,
G., Sun,
X., Zhang,
Z., Cronin,
S. B., Koga,
T., Ying,
J. Y., and Chen,
G., 1999, “The Promise of Low-Dimensional Thermoelectric Materials,” Microscale Thermophys. Eng., 3, pp. 89–100.

Yao,
T., 1987, “Thermal Properties of AlAs/GaAs Superlattices,” Appl. Phys. Lett., 51, pp. 1798–1800.

Weisbuch, C., and Vinter, B., 1991, *Quantum Semiconductor Structures*, Academic Press, Boston, MA.

Capinski,
W. S., and Maris,
H. J., 1996, “Thermal Conductivity of GaAs/AlAs Superlattices,” Physica B, 220, pp. 699–701.

Capinski,
W. S., Maris,
H. J., Ruf,
T., Cardona,
M., Ploog,
K., and Katzer,
D. S., 1999, “Thermal Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59, pp. 8105–8113.

Lee,
S. M., Cahill,
D. G., and Venkatasubramanian,
R., 1997, “Thermal Conductivity of Si-Ge Superlattices,” Appl. Phys. Lett., 70, pp. 2957–2959.

Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y., and Sasaki, T., 1998, “Thermoelectric Properties of Bi_{2}Te_{3}/Sb_{2}Te_{3} Superlattice Structures,” *Proceedings 17th International Thermoelectrics Conference ICT ’98*, IEEE, CA, pp. 210–213.

Venkatasubramanian,
R., 2000, “Lattice Thermal Conductivity Reduction and Phonon Localization Like Behavior in Superlattice Structures,” Phys. Rev. B, 61, pp. 3091–3097.

Huxtable, S. T., Abramson, A. R., Majumdar, A., Tien, C. L., LaBounty, C., Fan, X., Zeng, G., Abraham, P., Bowers, J. E., Shakouri, A., and Croke, E. T., 2001, “Thermal Conductivity of Si/SiGe Superlattices,” *Proceedings IMECE ’01*, ASME, New York.

Chen,
G., and Neagu,
M., 1997, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett., 71, pp. 2761–2763.

Rosenblum,
I., Adler,
J., Brandon,
S., and Hoffman,
A., 2000, “Molecular-Dynamics Simulation of Thermal Stress at the (100) Diamond/Substrate Interface: Effect of Film Continuity,” Phys. Rev. B, 62, pp. 2920–2936.

Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Lin, C. H., Delaney, A., and Pei, S. S., 2001, “Thermal Conductivity of InAs/AlSb Superlattices,” *Proceedings International Conference on Heat Transfer and Transport Phenomena in Microscale*, Banff, Canada, Begell House, New York, pp. 369–371.

Borca-Tasciuc, T., Liu, W. L., Liu, J. L., Zeng, Song, D. W., Moore, C. D., Chen, G., Wang, K. L., Goorsky, M. S., Radetic, T., Gronsky, R., Sun, X., and Dresselhaus, M. S., 1999, “Thermal Conductivity of Si/Ge Superlattices,” *Proceedings 18th International Conference on Thermoelectrics ICT ’99* IEEE, CA.

Rieger,
M. M., and Vogl,
P., 1993, “Electronic-Band Parameters in Strained Si(1-x)Ge(x) Alloys on Si(1-y)Ge(y) Substrates,” Phys. Rev. B, 48, pp. 14276–14287.

Tserbak,
C., Polataoglou,
H. M., and Theodorou,
G., 1993, “Unified Approach to the Electronic-Structure of Strained Si/Ge Superlattices,” Phys. Rev. B, 47, pp. 7104–7124.

Ghanbari,
R. A., White,
J. D., Fasol,
G., Gibbings,
C. J., and Tuppen,
C. G., 1990, “Phonon Frequencies for Si-Ge Strained Layer Superlattices Calculated in a Three-Dimensional Model,” Phys. Rev. B, 42, pp. 7033–7041.

Qteish,
A., and Molinari,
E., 1990, “Interplanar Forces and Phonon Spectra of Strained Si and Ge: *Ab initio* Calculations and Applications to Si/Ge Superlattices,” Phys. Rev. B, 42, pp. 7090–7096.

Sui,
Z., and Herman,
I. P., 1993, “Effect of Strain on Phonons in Si, Ge, and Si/Ge Heterostructures,” Phys. Rev. B, 48, pp. 17938–17953.

Little,
W. A., 1959, “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” Can. J. Phys., 37, pp. 334–349.

Stoner,
R. J., and Maris,
H. J., 1993, “Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K,” Phys. Rev. B, 48, pp. 16373–16387.

Tamura,
S., Tanaka,
Y., and Maris,
H. J., 1999, “Phonon Group Velocity and Thermal Conduction in Superlattices,” Phys. Rev. B, 60, pp. 2627–2630.

Tamura,
S., Hurley,
D. C., and Wolfe,
J. P., 1988, “Acoustic Phonon Propagation in Superlattices,” Phys. Rev. B, 38, pp. 1427–1449.

Simkin,
M. V., and Mahan,
G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84, pp. 927–930.

Narayanamurti,
V., Stormer,
H. L., Chin,
M. A., Gossard,
A. C., and Wiegmann,
W., 1979, “Selective Transmission of High-Frequency Phonons by a Superlattice: The “Dielectric” Phonon Filter,” Phys. Rev. Lett., 43, pp. 2012–2016.

Chen,
G., 1999, “Phonon Wave Heat Conduction in Thin Films and Superlattices,” ASME J. Heat Transfer, 121, pp. 945–953.

Swartz,
E. T., and Pohl,
R. O., 1987, “Thermal Resistance at Interfaces,” Appl. Phys. Lett., 51, pp. 2200–2202.

Balandin,
A., and Wang,
K. L., 1998, “Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well,” Phys. Rev. B, 58, pp. 1544–1549.

Chen,
G., 1997, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,” ASME J. Heat Transfer, 119, pp. 220–229.

Chen,
G., 1998, “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57, pp. 14958–14973.

Peterson,
R. B., 1994, “Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal,” ASME J. Heat Transfer, 116, pp. 815–1994.

Mazumdar,
S., and Majumdar,
A., 2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer, 123, pp. 749–759.

Liang,
X. G., and Shi,
B., 2000, “Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices,” Mater. Sci. Eng., A, 292, pp. 198–202.

Volz,
S., Saulnier,
J. B., Chen,
G., and Beauchamp,
P., 2000, “Molecular Dynamics of Heat Transfer in Si/Ge Superlattices,” High Temp.-High Press., 32, pp. 709–714.

Allen, M. P., and Tildesley, D. J., 1987, *Computer Simulation of Liquids*, Clarendon Press, Oxford.

Lukes,
J. R., Li,
D. Y., Liang,
X. G., and Tien,
C. L., “Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity,” ASME J. Heat Transfer, 122, pp. 536–543.

Irving,
J. H., and Kirkwood,
J. G., 1950, “The Statistical Mechanical Theory of Transport Processes A. The Equations of Hydrodynamics,” J. Chem. Phys., 18, pp. 817–829.

Swope,
W. C., Anderson,
H. C., Berens,
P. H., and Wilson,
K. R., 1982, “A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters,” J. Chem. Phys., 76, pp. 637–649.

Dobbs,
E. R., and Jones,
G. O., 1957, “Theory and Properties of Solid Argon,” Rep. Prog. Phys., 20, pp. 516–564.

Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1987, *The Properties of Gases and Liquids*, Mc-Graw Hill, New York.

White,
G. K., and Woods,
S. B., 1958, “Thermal Conductivity of the Solidified Inert Gases: Argon, Neon and Krypton,” Philos. Mag., 3, pp. 785–797.

Bao, Y., and Chen, G., 2000, “Lattice Dynamics Study of Anisotropy of Heat Conduction in Superlattices,” *Proceedings of MRS Spring Meeting, Symposium Z*, Materials Research Society, PA.

Jacucci,
G., and Rahman,
A., 1984, “Comparing the Efficiency of Metropolis Monte Carlo and Molecular Dynamics Methods for Configuration Space Sampling,” Nuovo Cimento, D4, pp. 341–356.

Weast, R. C., Astle, M. J., and Beyer, W. H., eds., 1996, *CRC Handbook of Chemistry and Physics*, CRC Press, Boca Raton.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, *Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd edition, Cambridge University Press, Cambridge.