Springer,
T. E., Zawodzinski,
T. A., and Gottesfeld,
S., 1991, “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc., 138(8), pp. 2334–2342.

Bernardi,
D. M., and Verbrugge,
M. W., 1991, “Mathematical Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte,” AIChE J., 37(8), pp. 1151–1163.

Bernardi,
D. M., and Verbrugge,
M. W., 1992, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc., 139(9), pp. 2477–2491.

Springer,
T. E., Wilson,
M. S., and Gottesfeld,
S., 1993, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., 140(12), pp. 3513–3526.

Fuller,
T. F., and Newman,
J., 1993, “Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells,” J. Electrochem. Soc., 140(5), pp. 1218–1225.

Nguyen,
T. V., and White,
R. E., 1993, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” J. Electrochem. Soc., 140(8), pp. 2178–2186.

Yi,
J. S., and Nguyen,
T. V., 1998, “An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., 145(4), pp. 1149–1159.

Yi,
J. S., and Nguyen,
T. V., 1999, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc., 146(1), pp. 38–45.

Gurau,
V., Liu,
H., and Kakac,
S., 1998, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE J., 44(11), pp. 2410–2422.

Singh,
D., Lu,
D. M., and Djilali,
N., 1999, “A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells,” Int. J. Eng. Sci., 37(4), pp. 431–452.

Um,
S., Wang,
C. Y., and Chen,
K. S., 2000, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc., 147(12), pp. 4485–4493.

He,
W., Yi,
J. S., and Nguyen,
T. V., 2000, “Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AIChE J., 46(10), pp. 2053–2064.

Natarajan,
D., and Nguyen,
T. V., 2001, “A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” J. Electrochem. Soc., 148(12), pp. A1324–A1335.

Zhou, T., and Liu, H., 2000, “3-D Model of Proton Exchange Membrane Fuel Cells,” *Proceedings of the ASME Heat Transfer Division*, 366-1 , pp. 43–49.

Shimpalee,
S., and Dutta,
S., 2000, “Numerical Prediction of Temperature Distribution in PEM Fuel Cells,” Numer. Heat Transfer, Part A, 38(2), pp. 111–128.

Dutta,
S., Shimpalee,
S., and Van Zee,
J. W., 2000, “Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells,” J. Appl. Electrochem., 30, pp. 135–146.

Dutta,
S., Shimpalee,
S., and Van Zee,
J. W., 2001, “Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell,” Int. J. Heat Mass Transfer, 44(11), pp. 2029–2042.

Berning,
T., Lu,
D. M., and Djilali,
N., 2002, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” J. Power Sources, 106(1–2), pp. 284–294.

Um, S., and Wang, C. Y., 2000, “Three-Dimensional Analysis of Transport and Reaction in Proton Exchange Membrane Fuel Cells,” *Proceedings of the ASME Heat Transfer Division—2000*, HTD-Vol. 366-1, pp. 19–25.

Nield, D. A., and Bejan, A., 1992, *Convection in Porous Media*, Springer, New York.

Bejan, A., 2000, *Shape and Structure, From Engineering to Nature*, Cambridge University Press, Cambridge.

Ticianelli,
E. A., Derouin,
C. R., and Srinivasan,
S., 1988, “Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells,” J. Electroanal. Chem., 251(2), pp. 275–295.

Dagan, G., 1989, *Flow and Transport in Porous Formations*, Springer, Berlin.

Bear, J., and Bachmat, Y., 1990, *Introduction to Modeling of Transport Phenomena in Porous Media*, Kluwer Academic Publishers, Dordrecht.

Kaviany, M., 1995, *Principles of Heat Transfer in Porous Media*, second ed., Springer, New York.

Whitaker, S., 1999, *The Method of Volume Averaging*, Kluwer Academic Publishers, Dordrecht.

Stull, D. R., and Prophet, H., 1971, *JANAF Thermochemical Tables*, second ed., NSRDS-NBS 37, National Bureau of Standards, Washington.

Curtiss,
C. F., and Hirschfelder,
J. O., 1949, “Transport Properties of Multicomponent Gas Mixtures,” J. Chem. Phys., 17(6), pp. 550–555.

Wilke,
C. R., 1950, “A Viscosity Equation for Gas Mixtures,” J. Chem. Phys., 18(4), pp. 517–519.

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, *Transport Phenomena*, Wiley, New York.

Hashin,
Z., and Shtrikman,
S., 1962, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,” J. Appl. Phys., 33(10), pp. 3125–3131.

Mason,
E. A., and Saxena,
S. C., 1958, “Approximate Formula for the Thermal Conductivity of Gas Mixtures,” Phys. Fluids, 1(5), pp. 361–369.

Chapman, S., and Cowling, T. G., 1990, *The Mathematical Theory of Non-Uniform Gases*, third ed., Cambridge University Press, Cambridge.

Newman, J. S., 1991, *Electrochemical Systems*, second ed., Prentice Hall, New Jersey.

Atkins, P., and de Paula, J., 2002, *Atkins’ Physical Chemistry*, seventh ed., Oxford University Press, New York.

Mazumder,
S., and Lowry,
S. A., 2001, “The Treatment of Reacting Surfaces for Finite-Volume Schemes on Unstructured Meshes,” J. Chem. Phys., 173(2), pp. 512–526.

Mazumder,
S., and Cole,
J. V., 2003, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells, I. Model Predictions without Liquid Water Transport,” J. Electrochem. Soc., 150(11), pp. A1503–1509.

Wang,
C. Y., and Cheng,
P., 1997, “Multiphase Flow and Heat Transfer in Porous Media,” Adv. Heat Transfer, 30, pp. 93–196.

Mazumder,
S., and Cole,
J. V., 2003, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells, II. Model Predictions With Liquid Water Transport,” J. Electrochem. Soc., 150(11), pp. A1510–1517.

Berning,
T., and Djilali,
N., 2003, “A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell,” J. Electrochem. Soc., 150(12), pp. A1589–1598.

2002, Duocel RVC Physical Characteristics Data Sheet, ERG Materials and Aerospace, Oakland, CA.

Boomsma,
K., and Poulikakos,
D., 2002, “The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams,” J. Fluids Eng., 124(1), pp. 263–272.

Boomsma,
K., and Poulikakos,
D., 2001, “On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam,” Int. J. Heat Mass Transfer, 44(4), pp. 827–836.

Kuchling, H., 1991, *Taschenbuch der Physik*, Fachbuchverlag Leipzig, Leipzig.