Comparison of Two Procedures for the Estimation of Surface Temperature History Using Function Specification Method

[+] Author and Article Information
Alfonso Corz

Departamento de Ingenierı́a Industrial e Ingenierı́a Civil

José M. Gutiérrez

Departamento de Fı́sica Aplicada

Juan A. Martı́n

Departamento de Ingenierı́a Eléctrica, Universidad de Cádiz, Avda. Ramón Pujol, s/n, 11202 Algeciras, (Cádiz), Spain

J. Heat Transfer 126(3), 475-479 (Jun 16, 2004) (5 pages) doi:10.1115/1.1738420 History: Received February 26, 2002; Revised November 19, 2003; Online June 16, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction, Ill-Posed Problems, Wiley-Interscience, New York.
Tikhonov, A. N., and Arsenin, V. Y., 1977, Solution of Ill-Posed Problems, V. H. Winston & Sons, Washington, DC.
Alifanov, O. M., 1994, Inverse Heat Transfer Problems, Springer, New York.
Murio, D. A., 1993, The Mollification Method and the Numerical Solution of Ill-Posed Problems, Wiley-Interscience, New York.
Beck,  J. V., Litkouhi,  B., and St. Clair,  C. R., 1982, “Efficient Sequential Solution of the Nonlinear Heat Conduction Problem,” Numer. Heat Transfer, 5, pp. 275–286.
Blanc,  G., Raynaud,  M., and Chau,  T. C., 1998, “A Guide for the Use of the Function Specification Method for 2D Inverse Heat Conduction Problems,” Rev. Gén. Therm. Elsevier.,37, pp. 17–30.
Martin,  T. J., and Dulikravich,  G. S., 1996, “Inverse Determination of Boundary Conditions and Sources in Steady Heat Conduction With Heat Generation,” ASME J. Heat Transfer, 118, pp. 546–554.
Matsevityi,  Yu. M., Maliarenko,  V. A., and Multanovskii,  A. V., 1979, “Identification of Time-Variable Coefficients of Heat Transfer by Solving a Nonlinear Inverse Problem of Heat Conduction,” J. Eng. Phys., 35(3), pp. 1094–1098.
Woodbury, K. A., and Jin X., 1995, “A Temperature-Based Sequential Specification Algorithm for the IHCP,” National Heat Transfer Conference, HTD Vol. 312, pp. 141–150.
Flach,  G. P., and Özişik,  M. N., 1988, “Inverse Heat Conduction Problem of Periodically Contacting Surfaces,” ASME J. Heat Transfer, 110, pp. 821–829.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
Blanc,  G., Beck,  J. V., and Raynaud,  M., 1997, “Solution of the Inverse Heat Conduction Problem With a Time-Variable Numbers of Future Temperatures,” Numer. Heat Transfer, Part B, 32, pp. 437–451.


Grahic Jump Location
(a) One-dimensional problem and heat flow considered; and (b) analytical solution of the problem at x=0 and at x=1
Grahic Jump Location
Case-1: (a) Procedure-I; and (b) Procedure II
Grahic Jump Location
Case-2: (a) Procedure-I; and (b) Procedure II
Grahic Jump Location
Case-3: (a) Procedure-I; and (b) Procedure II



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In