Cahill,
D. G., Goodson,
K., and Majumdar,
A., 2002, “Thermometry and Thermal Transport in Micro/Nanoscale Solid State Devices,” ASME J. Heat Transfer, 124(2), pp. 223–241.

Chen,
G., and Shakouri,
A., 2002, “Heat Transfer in Nanostructures for Solid State Energy Conversion,” ASME J. Heat Transfer, 124(2), pp. 242–252.

Kulish,
V. V., Lage,
J. L., Komorov,
P. L., and Raad,
P. E., 2001, “A Fractional-Diffusion Theory for Calculating Thermal Properties of Thin Films From Surface Transient Thermoreflectance Measurements,” ASME J. Heat Transfer, 123(6), pp. 1133–1138.

Mazumber,
S., and Majumdar,
A., 2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer, 123(4), pp. 749–759.

Zeng,
T., and Chen,
G., 2001, “Phonon Heat Conduction in Thin Films: Impact of Thermal Boundary Resistance and Internal Heat Generation,” ASME J. Heat Transfer, 123(2), pp. 340–347.

Wang,
X., Hu,
H., and Xu,
X., 2001, “Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials,” ASME J. Heat Transfer, 123(1), pp. 138–144.

Li,
B., Pottier,
L., Roger,
J. P., Fournier,
D., Watari,
K., and Hirao,
K., 1999, “Measuring the Anisotropic Thermal Diffusivity of Silicon Nitride Grains by Thermoreflectance Microscopy,” J. Eur. Ceram. Soc., 19, p. 1631.

Gomes,
S., Trannoy,
N., Grossel,
Ph., Depasse,
F., Bainier,
C., and Charraut,
D., 2001, “Scanning Thermal Microscopy: Characterization and Interpretation of the Measurement,” Int. J. Thermophys., 40, pp. 949–958.

Hmina,
N., and Scudeller,
Y., 1998, “Thermal Interface Resistance and Subsurface Effusivity of Submicron Metallic Films on Dielectric Substrates: An Experimental Method for Simultaneous Determination,” Int. J. Heat Mass Transfer, 41(18), pp. 2781–2798.

Bincheng,
L., Potier,
L., Roger,
J. P., and Fournier,
D., 1999, “Thermal Characterization of Thin Superconducting Films by Modulated Thermoreflectance Microscopy,” Thin Solid Films, 352(1–2), pp. 91–96.

Maruyama,
S., 2002, “A Molecular Dynamics Simulation of the Heat Conduction in Finite Length SWNTs,” Physica B, 323, pp. 193–195.

Berbert,
S., Kwon,
Y. K., and Tomanek,
D., 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84(25), pp. 4613–4616.

Jund,
P., and Jullien,
R., 1999, “Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica,” Phys. Rev. B, 59(21), pp. 13707–13711.

Daly,
B. C., and Maris,
H. J., 2002, “Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulations,” Physica B, 316–317, pp. 247–249.

Allen, M. P., and Tildesley, D. J., 1987, *Computer Simulation of Liquid*, Oxford University Press Inc., New York.

Frenkel, D., and Smit, B., 1996, *Understanding Molecular Simulation*, Academic Press, San Diego.

Kubo, R., Toda, M., and Hashitsume, N., 1985, *Statistical Physics II*, Springer, Berlin.

Barrat,
J. L., and Chiaruttini,
F., 2003, “Kapitza Resistance at the Liquid Solid Interface,” Mol. Phys., 101, p. 1605.

Evans, D. J., and Morris, G. P., 1990, *Statistical Mechanics of Nonequilibrium Liquids*, Academic Press, New York.

Baranyai,
A., 1996, “Heat Flow Studies for Large Temperature Gradients by Molecular Dynamics Simulations,” Phys. Rev. E, 54(6), pp. 6911–6917.

Hansen,
D. P., and Evans,
D. J., 1994, “A Generalized Heat Flow Algorithm,” Mol. Phys., 81(4), pp. 767–779.

Maiti,
A., Mahan,
G. D., and Pantelides,
S. T., 1997, “Dynamical Simulations of Nonequilibrium Processes—Heat Flow and the Kapitza Resistance Across Grain Boundaries,” Solid State Commun., 102(7), pp. 517–521.

Zheng,
Q., Su,
G., Wang,
J., and Guo,
H., 2002, “Thermal Conductance for Single Wall Carbon Nanotubes,” Eur. Phys. J. B, 25, pp. 233–238.

Plimpton,
S. J., 1995, J. Comput. Phys., 117 (1) code available at http://www.cs.sandia.gov/tech8reports/ssjplimp.

Lukes,
J. R., Li,
D. Y., Liang,
X. G., and Tien,
C. L., 2000, “Molecular Dynamics Study of Solid Thin Film Thermal Conductivity,” ASME J. Heat Transfer, 122, p. 536.

Müller-Plathe,
F., 1997, “A Simple Non-Equilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity,” J. Chem. Phys., 106(14), p. 6082.

Ikeshoji,
T., and Hafskjold,
B., 1994, “Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and Through Liquid Gas Interface,” Mol. Phys., 81, pp. 251–261.

Kotake,
S., and Wakuri,
S., 1994, “Molecular Dynamics Study of Heat Conduction in Solid Materials,” JSME Int. J., Ser. B, 37(1), pp. 103–108.

Olischlger,
C., and Schön,
J. C., 1999, “Simulation of Thermal Conductivity and Heat Transport in Solids,” Phys. Rev. B, 59(6), pp. 4125–4133.

Chantrenne, P., and Barrat, J. L., 2004, “Analytical Model for the Determination of Thermal Conductivity in Nanostructures,” Superlattices Microstruct., to be published.

Chapman, S., and Cowling, T. G., 1970, *The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases*, third ed., Cambridge University Press.

Fujita, S., 1996, *Statistical and Thermal Physics*, Part I, R. E. Krieger Publishing Company, Malabar, FL.

Rosenblum,
I., Adler,
J., and Brandon,
S., 1998, “Calculation of Thermal Properties of Diamond From Simulated Phonon Spectra,” Comput. Mater. Sci., 12, pp. 9–25.

Che,
J., Çagin,
T., and Goddard,
W. A., 2000, “Thermal Conductivity of Carbon Nanotubes, Nanotechnology,” Nanotechnology, 11, pp. 65–69.

Volz,
S., and Chen,
G., 1999, “Lattice Dynamic Simulation of Silicon Thermal Conductivity,” Physica B, 263–264, pp. 709–712.

Motoyama,
S., Ichikawa,
Y., Hiwatari,
Y., and Oe,
A., 1999, “Thermal Conductivity of Uranium Dioxide by Nonequilibrium Molecular Dynamics Simulation,” Phys. Rev. B, 60(1), pp. 292–298.

Kittel, C., 1996, *Introduction to Solid State Physics*, Wiley, New York.

Ashcroft, N. W., and Mermin, N. D., 1976, “*Solid State Physics*,” Harcourt College Publishers, Fort Worth, TX.

Chaikin, P. M., and Lubensky, T. C., 1995, *Principle of Condensed Matter Physics*, Cambridge Press University.

Zou,
J., and Balandin,
A., 2001, “Phonon Heat Conduction in a Semiconductor Nanowire,” J. Appl. Phys., 89(5), pp. 2932–2938.

Quesnel,
D. J., Rimai,
D. S., and DeMejo,
L. P., 1993, “Elastic Compliances and Stiffnesses of the FCC Lennard-Jones Solid,” Phys. Rev. B, 48(10), pp. 6795–6807.

Lepri,
S., Livi,
R., and Politi,
A., 2003, “Thermal Conduction in Classical Low-Dimensional Lattices,” Phys. Rep., 377, pp. 1–80.