TECHNICAL PAPERS: Micro/Nanoscale Heat Transfer

Molecular Dynamics Study of Phase Change Mechanisms During Femtosecond Laser Ablation

[+] Author and Article Information
Xianfan Xu, Changrui Cheng, Ihtesham H. Chowdhury

School of Mechanical Engineering, Purdue University

J. Heat Transfer 126(5), 727-734 (Nov 16, 2004) (8 pages) doi:10.1115/1.1797011 History: Received August 04, 2003; Revised June 03, 2004; Online November 16, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Anisimov,  S. I., Kapeliovich,  B. L., and Perel’man,  T. L., 1974, “Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses,” Sov. Phys. JETP, 39, pp. 375–377.
Qiu,  T. Q., and Tien,  C. L., 1993, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME J. Heat Transfer, 115, pp. 835–841.
Chowdhury,  I. H., and Xu,  X., 2003, “Heat Transfer in Femtosecond Laser Processing of Metal,” Numer. Heat Transfer, Part A, 44, pp. 219–232.
Kotake,  S., and Kuroki,  M., 1993, “Molecular Dynamics Study of Solid Melting and Vaporization by Laser Irradiation,” Int. J. Heat Mass Transfer, 36, pp. 2061–2067.
Herrmann,  R. F. W., and Campbell,  E. E. B., 1998, “Ultrashort Pulse Laser Ablation of Silicon: an MD Simulation Study,” Appl. Phys. A: Solids Surf., 66, pp. 35–42.
Ohmura, E., Fukumoto, I., and Miyamoto, I., 1999, “Modified Molecular Dynamics Simulation on Ultrafast Laser Ablation of Metal,” Proceedings of the International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, Orlando, pp. 219–228.
Girifalco,  L. A., and Weizer,  V. G., 1959, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., 114, pp. 687–690.
Etcheverry,  J. I., and Mesaros,  M., 1999, “Molecular Dynamics Simulation of the Production of Acoustic Waves by Pulsed Laser Irradiation,” Phys. Rev. B, 60, pp. 9430–9434.
Wang,  X., and Xu,  X., 2002, “Molecular Dynamics Simulation of Heat Transfer and Phase Change During Laser Materials Interaction,” ASME J. Heat Transfer, 124, pp. 265–274.
Wang,  X., and Xu,  X., 2002, “Molecular Dynamics Simulation of Thermal and Thermomechanical Phenomena in Picosecond Laser Material Interaction,” Int. J. Heat Mass Transfer, 46, pp. 45–53.
Xu, X., 2001, “Heat Transfer and Phase Change in Pulsed Excimer Laser Ablation of Metal,” Annual Review of Heat Transfer, 12 , C.-L. Tien, V. Prasad, and F. P. Incropera, eds., Bell House, New York, pp. 79–115.
Kelly,  R., and Miotello,  A., 1996, “Comments on Explosive Mechanisms of Laser Sputtering,” Appl. Surf. Sci., 96–98, pp. 205–215.
Song,  K. H., and Xu,  X., 1998, “Explosive Phase Transformation in Pulsed Laser Ablation,” Appl. Surf. Sci., 127, pp. 111–116.
Siders,  C. W., Cavalier,  A., Sokolowski-Tinten,  K., Toth.,  Cs., Guo,  T., Kammler,  M., Horn von Hoegen,  M., Wilson,  K. R., von der Linde,  D., and Barty,  C. P. J., 1999, “Detection of Nonthermal Melting by Ultrafast X-Ray Diffraction,” Science, 286, pp. 1340–1342.
Henyk,  M., Wolfframm,  D., and Reif,  J., 2000, “Ultra Short Laser Pulse Induced Charged Particle Emission From Wide Bandgap Crystals,” Appl. Surf. Sci., 168, pp. 263–266.
Skripov, V. P., 1974, Metastable Liquids, John Wiley & Sons, New York.
Xu,  X., and Willis,  D. A., 2002, “Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation,” ASME J. Heat Transfer, 124, pp. 293–298.
Skripov,  V. P., and Skripov,  A. V., 1979, “Spinodal Decomposition (Phase Transition via Unstable States),” Soviet Physics Uspekhi,22, pp. 389–410.
Vidal,  F., Johnston,  T. W., Laville,  S., Barthelemy,  O., Chaker,  M., Le Drogoff,  B., Margot,  J., and Sabsabi,  M., 2001, “Critical-Point Phase Separation in Laser Ablation of Conductors,” Phys. Rev. Lett., 86, pp. 2573–2576.
Constantoudis,  V., and Nicolaides,  C. A., 2001, “Nonhyperbolic Escape and Changes in Phase-Space Stability Structures in Laser-Induced Multiphoton Dissociation of a Diatomic Molecule,” Phys. Rev. E, 64, p. 056211.
Ohmura,  E., Fukumoto,  I., and Miyamoto,  I., 2000, “Molecular Dynamics Simulation of Ablation Process With Ultra-Short Pulsed Laser,” Proc. SPIE, 4088, pp. 84–89.
Nedialkov,  N. N., Imamova,  S. E., and Atanasov,  P. A., 2004, “Ablation of Metals by Ultrashort Laser Pulses,” J. Phys. D, 37, pp. 638–643.
Atanasov,  P. A., Nedialkov,  N. N., Imamova,  S. E., Ruf,  A., Hügel,  H., Dausinger,  F., and Berger,  P., 2002, “Laser ablation of Ni by Ultrashort Pulses: Molecular Dynamics Simulation,” Appl. Surf. Sci., 186, pp. 369–373.
Foiles,  S. M., Baskes,  M. I., and Daw,  M. S., 1986, “Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Phys. Rev. B, 33, pp. 7983–7991.
Schäfer,  C., Urbassek,  M., and Zhigilei,  L. V., 2002, “Metal Ablation by Picosecond Laser Pulses: A Hybrid Simulation,” Phys. Rev. B, 66, pp. 115404-1–115404-8.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford.
Häkkinen,  H., and Landman,  U., 1993, “Superheating, Melting and Annealing of Copper Surfaces,” Phys. Rev. Lett., 71, pp. 1023–1027.
Sun,  C.-K., Vallée,  F., Acioli,  L. H., Ippen,  E. P., and Fujimoto,  J. G., 1994, “Femtosecond-Tunable Measurement of Electron Thermalization in Gold,” Phys. Rev. B, 50, pp. 15337–15347.
Berman, R., 1976, Thermal Conduction in Solids, Clarendon Press, Oxford.
Brorson,  S. D., Fujimoto,  J. G., and Ippen,  E. P., 1987, “Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films,” Phys. Rev. Lett., 59, pp. 1962–1965.
Hohlfeld,  J., Wellershoff,  S.-S., Güdde,  J., Conrad,  U., Jähnke,  V., and Matthias,  E., 2000, “Electron and Lattice Dynamics Following Optical Excitation of Metals,” Chem. Phys., 251, pp. 237–258.
Xu,  X., Chen,  G., and Song,  K. H., 1999, “Experimental and Numerical Investigation of Heat Transfer and Phase Change Phenomena During Excimer Laser Interaction With Nickel,” Int. J. Heat Mass Transfer, 42, pp. 1371–1382.
Lide, D. R., 2001, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton.
Wang, X., 2004, “Thermal and Thermomechanical Phenomena in Picosecond Laser Copper Interaction,” ASME J. Heat Transfer, 126 , pp. 355–364.
Young,  D. A., and Alder,  B. J., 1971, “Critical Point of Metals From the van der Waals Model,” Phys. Rev. E, 3, pp. 364–371.
Preuss,  S., Demchuk,  A., and Stuke,  M., 1995, “Sub-Picosecond UV Laser Ablation of Metals,” Appl. Phys. A: Solids Surf., 61, pp. 33–37.


Grahic Jump Location
(a) p-v diagram of phase explosion at spinode; and (b) p-v diagram of critical point phase separation
Grahic Jump Location
Schematic of the computational domain
Grahic Jump Location
Schematic of domain division and position and velocity exchange in parallel calculation
Grahic Jump Location
Comparison of electron (left column) and lattice temperatures (right column) obtained from MD and FD calculations
Grahic Jump Location
Comparison of the melt depth obtained from MD and FD calculations
Grahic Jump Location
Atomic number density at different time steps
Grahic Jump Location
Atomic positions at different time steps
Grahic Jump Location
Atomic position at 18 ps, showing a layer in the y-direction from y=4 nm to 5 nm
Grahic Jump Location
Surface temperature history



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In