Temperature Measurement by Visible Pyrometry: Orthogonal Cutting Application

[+] Author and Article Information
N. Ranc, V. Pina

L.E.E.E., E.A.387, Université de Paris X Nanterre, 1, Chemin Desvallières, 92410 Ville d’Avray, France Tel.: +33-1-47-09-70-13; Fax: +33-1-47-09-16-45

G. Sutter, S. Philippon

L.P.M.M., U.M.R. C.N.R.S. n°7554, I.S.G.M.P., Université de Metz, Ile du Saulcy, 57045 Metz, France

J. Heat Transfer 126(6), 931-936 (Jan 26, 2005) (6 pages) doi:10.1115/1.1833361 History: Received October 09, 2003; Revised August 17, 2004; Online January 26, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Milton, C., and Shaw, M. C., 1984, Metal Cutting Principles, Clarendon Press, Oxford Science Publication, UK.
Loewen,  E. G., and Shaw,  M. C., 2000, “On the Analysis of Cutting Tool Temperature,” Trans. Am. Soc. Mech. Engrs.,71, pp. 217–231.
Hastings,  W. F., Mathews,  P., and Oxley,  P. L. B., 1980, “A Machining Theory for Predicting Chip Geometry, Cutting Forces Etc. From Material Properties and Cutting Conditions,” Proc. R. Soc. London, Ser. A, 371, pp. 569–587.
Doyle,  E. D., Homme,  J. G., and Tabor,  D., 1979, “Frictional Interaction Between Chip and Rake Face in Continuous Chip Formation,” Proc. R. Soc. London, Ser. A, 3666, pp. 176–183.
Grzesik,  W., 2003, “Friction Behavior of Heat Isolating Coating in Machining: Mechanical, Thermal and Energy-Based Considerations,” Int. J. Mach. Tools Manuf., 43, pp. 145–150.
Sutter,  G., Faure,  L., Molinari,  A., Ranc,  N., and Pina,  V., 2003, “An Experimental Technique for the Measurement of Temperature Fields for the Orthogonal Cutting in High Speed Machining,” Int. J. Mach. Tools Manuf., 43, pp. 671–678.
Ay,  H., and Yang,  W. J., 1998, “Heat Transfer and Life of Metal Cutting Tools in Turning,” Int. J. Heat Mass Transfer, 43, pp. 613–623.
Planck,  M., 1901, “Distribution of Energy,” Ann. Phys. (N.Y.), 4, 3, pp. 553–563.
Childs,  P. R. N., Greenwood,  J. R., and Long,  C. A., 2000, “Review of Temperature Measurement,” Rev. Sci. Instrum., 71, 8, pp. 2959–2978.
Murray,  T. P., 1967, “Polaradiometer: A New Instrument for Temperature Measurement,” Rev. Sci. Instrum., 38, pp. 791–798.
Hervé,  P., 1983, “Mesure simultanée de la température de surface et de son émissivité,” Measurement, 485, pp. 20–24.
Duvaut,  T., Georgeault,  D., and Beaudoin,  J. L., 1995, “Multiwavelength Infrared Pyrometry: Optimization and Computer Simulations,” Infrared Phys. Technol., 36, pp. 1089–1103.
Zehnder,  A. T., Guduru,  P. R., Rosakis,  A. J., and Ravichandran,  G., 2000, “Million Frames Per Second Infrared Imaging System,” Rev. Sci. Instrum., 71, 10, pp. 3762–3768.
Guduru,  P. R., Ravichandran,  G., and Rosakis,  A. J., 2001, “Observation of Transient High Vortical Microstructures in Solids During Adiabatic Shear Banding,” Phys. Rev. E, 64, pp. 1–6.
Guduru,  P. R., Zehnder,  A. T., Rosakis,  A. J., and Ravichandran,  G., 2001, “Dynamic Full Field Measurements of Crack Tip Temperatures,” Eng. Fract. Mech., 68, pp. 1535–1556.
Ranc,  N., Pina,  V., and Hervé,  P., 2000, “Optical Measurements of Phase Transition and Temperature in Adiabatic Shear Bands in Titanium Alloys,” J. Phys. IV, 10, pp. 347–352.
Modest, M. F., 1993, Radiative Heat Transfert, McGraw–Hill, New York.
Palik, E. D., 1985, Handbook of Optical Constants, Academic, New York.
Piriou,  B., 1973, “Mise au point sur les facteurs d’émission,” Rev. Int. Hautes Temp. Refract., 10, pp. 283–295.
Hampartsoumian,  E., Hainsworth,  D., Taylor,  J. M., and Williams,  A., 2001, “The Radiant Emissivity of Some Materials at High Temperatures-Review,” J. Inst. Energy, 74, pp. 91–99.
Hiernaut,  J. P., Beukers,  R., Hoch,  M., Matsui,  T., and Ohse,  R. W., 1986, “Determination of the Melting Point and of the Spectral and Total Emissivities of Tungsten, Tantalum and Molybdenum in the Solid and Liquid States With a Six-Wavelength,” High Temp. - High Press., 18, pp. 627–633.
Dunkle, R. V., 1960, “Thermal Radiation Characteristics of Surfaces,” Theory and fundamental research in heat transfer: Proceedings of the Annual Meeting of the American Society of Mechanical Engineers, New York.
Hervé, P., 1977, “Influence de l’état de surface sur le rayonnement thermique des matériaux solides,” Ph.D. thesis, Paris VI.
Antoni Zdziobek,  A., Pina,  V., Hervé,  P., and Durand,  F., 1997, “A Radiative Thermal Analysis Method for Phase Change Determination of Strictly Controlled Refractory Alloys,” High Temp. Mater. Sci., 37, pp. 97–114.
Birkebak,  R. C., and Eckert,  E. R. G., 1965, “Effects of Roughness of Metal Surfaces on Angular Distribution of Monochromatic Reflected Radiation,” ASME J. Heat Transfer, 87, pp. 85–94.
Sutter,  G., Molinari,  A., Faure,  L., Klepaczko,  J. R., and Dudzinski,  D., 1998, “An Experimental Study of High Speed Orthogonal Cutting,” ASME J. Manuf. Sci. Eng., 12, pp. 169–172.
Vernaza-Pena,  K. M., Mason,  J. J., and Li,  M., 2001, “Experimental Study of the Temperature Field Generated During Orthogonal Machining of an Aluminum Alloy,” Exp. Mech., 42, 2, pp. 221–229.
Muller, B., 2001, “Temperature Measurements With a Fibre-Optic Two-Color Pyrometer,” Scientific Fundamentals of High Speed Cutting, edited by H. Schulz, Carl Hanser Verlag, München-Wien, pp. 181–186.
Touloukian, Y. S., and DeWitt, D. P., 1970, Thermophysical Properties of Matter—Thermal Radiative Properties, IFI/Plenum, New York, Washington, Vol. 7.


Grahic Jump Location
Thermal radiation spectrum
Grahic Jump Location
Blackbody spectral intensity for the temperatures of 400°C, 800°C, and 1200°C
Grahic Jump Location
Radiance sensitivity to the temperature variations for the temperatures of 400°C, 800°C, and 1200°C
Grahic Jump Location
Quantum efficiency of the intensified camera
Grahic Jump Location
Calibration curves. (a) Representation according to the temperature. (b) Representation according to the power
Grahic Jump Location
Mechanical device of orthogonal cutting
Grahic Jump Location
Photographic recording of chip formation during the process of orthogonal cutting. (a) t1=0.49 mm,Vc=17 ms−1, α=0 deg; (b) t1=0.54 mm,Vc=60 ms−1, α=0 deg
Grahic Jump Location
Chip thermography for different cutting speeds
Grahic Jump Location
Error on the temperature measurement according to the emissivity at a temperature of 800°C
Grahic Jump Location
Error on the temperature measurement according to the temperature for a fixed emissivity



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In