TECHNICAL PAPERS: Radiative Heat Transfer

Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique

[+] Author and Article Information
Robert J. Stevens

Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville, VA 22904

Andrew N. Smith

Department of Mechanical Engineering United States Naval Academy Annapolis, MD 21402

Pamela M. Norris

Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville, VA 22904e-mail: pamela@virginia.edu

J. Heat Transfer 127(3), 315-322 (Mar 24, 2005) (8 pages) doi:10.1115/1.1857944 History: Received December 12, 2003; Revised September 21, 2004; Online March 24, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Mahan,  G. D., and Woods,  L. M., 1998, “Multilayer Thermionic Refrigeration,” Phys. Rev. Lett., 80, pp. 4016–4019.
da Silva, L. W., and Kaviany, M., 2002, “Miniaturized Thermoelectric Cooler,” Proc. 2002 ASME International Mechanical Engineering Congress and Exposition, ASME, New York, pp. IMECE2002-32437 1–15.
Phelan,  P. E., 1998, “Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors,” ASME J. Heat Transfer, 120, pp. 37–43.
Phelan,  P. E., Song,  Y., Nakabeppu,  O., Ito,  K., Hijikata,  K., Ohmori,  T., and Torikoshi,  K., 1994, “Film/Substrate Thermal Boundary Resistance for an Er–Ba–Cu–O High-Tc Thin Film,” ASME J. Heat Transfer, 116, pp. 1038–1041.
Filippov,  K. A., and Balandin,  A. A., 2003, “The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs,” MRS Internet J. Nitride Semicond. Res., 8, pp. 1–4.
Kim,  E.-K., Kwun,  S.-I., Lee,  S.-M., Seo,  H., and Yoon,  J.-G., 2000, “Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface,” Appl. Phys. Lett., 76, pp. 3864–3866.
Swartz,  E. T., and Pohl,  R. O., 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys., 61, pp. 605–668.
Little,  W. A., 1959, “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” Can. J. Phys., 37, pp. 334–349.
Swartz,  E. T., and Pohl,  R. O., 1987, “Thermal Resistance at Interfaces,” Appl. Phys. Lett., 51, pp. 2200–2202.
Young,  D. A., and Maris,  H. J., 1989, “Lattice-Dynamical Calculation of the Kapitza Resistance Between fcc Lattices,” Phys. Rev. B, 40, pp. 3685–3693.
Stoner,  R. J., and Maris,  H. J., 1993, “Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K,” Phys. Rev. B, 48, pp. 16373–16387.
Pettersson,  S., and Mahan,  G. D., 1990, “Theory of the Thermal Boundary Resistance Between Dissimilar Lattices,” Phys. Rev. B, 42, pp. 7386–7390.
Kechrakos,  D., 1991, “The Role of Interface Disorder in Thermal Boundary Conductivity Between Two Crystals,” J. Phys.: Condens. Matter, 3, pp. 1443–1452.
Fagas,  G., Kozorezov,  A. G., Lambert,  C. J., and Wigmore,  J. K., 1999, “Lattice-Dynamical Calculation of Phonon Scattering at a Disordered Interface,” Physica B, 263–264, pp. 739–741.
Cahill,  D. G., Ford,  W. K., Goodson,  K. E., Mahan,  G. D., Majumdar,  A. M., Humphrey,  J., Merlin,  R., and Phillpot,  S. R., 2003, “Nanoscale Thermal Transport,” J. Appl. Phys., 93, pp. 793–818.
Rosencwaig,  A., Opsal,  J., Smith,  W. L., and Willenborg,  D. L., 1985, “Detection of Thermal Waves Through Optical Reflectance,” Appl. Phys. Lett., 46, pp. 1013–1015.
Pottier,  L., 1994, “Micrometer Scale Visulatization of Thermal Waves by Photoreflectance Microscopy,” Appl. Phys. Lett., 64, pp. 1618–1619.
Li,  B., and Zhang,  S., 1997, “The Effect of Interface Resistances on Thermal Wave Propagation in Multilayered Samples,” J. Phys. D, 30, pp. 1447–1454.
Li,  B., Roger,  J. P., Pottier,  L., and Fournier,  D., 1999, “Complete Thermal Characterization of Film-on-Substrate System by Modulated Thermoreflectance Microscopy and Multiparameter Fitting,” J. Appl. Phys., 86, pp. 5314–5316.
Cahill,  D. G., Bullen,  A., and Lee,  S.-M., 2000, “Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films,” High Temp. - High Press., 32, pp. 135–142.
Lee,  S.-M., and Cahill,  D. G., 1997, “Heat Transport in Thin Dielectric Films,” J. Appl. Phys., 81, pp. 2590–2595.
Costescu,  R. M., Wall,  M. A., and Cahill,  D. G., 2003, “Thermal Conductance of Epitaxial Interfaces,” Phys. Rev. B, 67, pp. 054302 1–5.
Smith, A. N., Caffrey, A. P., Klopf, M. J., and Norris, P. M., 2001, “Importance of Signal Phase on the Transient Thermoreflectance Response as a Thermal Sensor,” Proc. of the 35th National Heat Transfer Conference, ASME, New York, pp. NHTC01 11221 1–6.
Capinski,  W. S., and Maris,  H. J., 1996, “Improved Apparatus for Picosecond Pump-and-Probe Optical Measurements,” Rev. Sci. Instrum., 67, pp. 2720–2726.
Qiu,  T. Q., and Tien,  C. L., 1992, “Short-Pulse Laser Heating of Metals,” Int. J. Heat Mass Transfer, 35, pp. 719–726.
Smith,  A., Hostetler,  J. L., and Norris,  P. M., 2000, “Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique,” Microscale Thermophys. Eng., 4, pp. 51–60.
Kittel, C., 1996, Introduction to Solid State Physics, 7th ed., Wiley, New York.
Fugate,  R. Q., and Swenson,  C. A., 1969, “Specific Heat of Al2O3 From 2 to 25 K,” J. Appl. Phys., 40, pp. 3034–3036.
Levinshtein, M. E., Rumyantsev, S. L., and Shur, M. S., eds., 2001, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, Wiley-Interscience, New York, p. 216.
Franciosi,  A., Peterman,  D. J., Weaver,  J. H., and Moruzzi,  V. L., 1982, “Structural Morphology and Electronic Properties of the Si–Cr Interface,” Phys. Rev. B, 25, pp. 4981–4993.
Hiraki,  A., Shuto,  S., Kim,  S., Kammura,  W., and Iwami,  M., 1977, “Room-Temperature Interfacial Reaction in Au-Semiconductor,” Appl. Phys. Lett., 31, pp. 611–612.
Touloukian, Y. S., 1970, Thermophysical Properties of Matter, Plenum, New York.
Majumdar,  A., and Reddy,  P., 2004, “Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces,” Appl. Phys. Lett., 84, pp. 4768–4770.
Kosevich,  Y. A., 1995, “Fluctuation Subharmonic and Multiharmonic Phonon Transmission and Kapitza Conductance Between Crystals With Very Different Vibrational Spectra,” Phys. Rev. B, 52, pp. 1017–1024.
Sergeev,  A., 1999, “Inelastic Electron-Boundary Scattering in Thin Films,” Physica B, 263, pp. 217–219.
Sergeev,  A. V., 1998, “Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering,” Phys. Rev. B, 58, pp. R10199–10202.
Huberman,  M. L., and Overhauser,  A. W., 1994, “Electronic Kapitza Conductance at a Diamond-Pb Interface,” Phys. Rev. B, 50, pp. 2865–2873.


Grahic Jump Location
Modeled thermal response of 30 nm Al film on a sapphire substrate with σ=1.05×108 W/m2 K. The dotted lines are the thermal response for the same film with ±50% change in σ.
Grahic Jump Location
Experimental results for 29 Pt film on Si
Grahic Jump Location
Experimental results for 30 nm Cr film on Si with (a) bulk value used for ks; and (b) ks treated as a free parameter
Grahic Jump Location
TBC versus the ratio of Debye temperatures of the metal film and dielectric substrate. Some data are from Stoner and Maris 11.
Grahic Jump Location
Ratio of measured to theoretical DMM TBC versus the ratio of Debye temperatures of the metal film and dielectric substrate. Some data is from Stoner and Maris 11.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In