Simões, P. C., Afonso, B., Fernandes, J., and Mota, J. P. B., 2008, “Static Mixers as Heat Exchangers in Supercritical Fluid Extraction Processes,” J. Supercrit. Fluids, 43 , pp. 477–483.

[CrossRef]Nikitin, K., Kato, Y., and Ngo, L., 2006, “Printed Circuit Heat Exchanger Thermal–Hydraulic Performance in Supercritical CO2 Experimental Loop,” Int. J. Refrig., 29 , pp. 807–814.

[CrossRef]van der Kraan, M., Peeters, M. M. W., Cid, M. V. F., Woerlee, G. F., Veugelers, W. J. T., and Witkamp, G. J., 2005, “The Influence of Variable Physical Properties and Buoyancy on Heat Exchanger Design for Near and Supercritical Conditions,” J. Supercrit. Fluids, 34 , pp. 99–105.

[CrossRef]Hall, W. B., and Jackson, J. D., 1969, “Laminarization of a Turbulent Pipe Flow by Buoyancy Force,” ASME Paper No. 69.

Jackson, J. D., and Hall, W. B., 1979, “Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions,” "*Turbulent Forced Convection in Channels and Bundles*", Vol. 2 , S.Kakac and D.B.Spalding, eds., Hemisphere, New York, pp. 613–640.

Renz, U., and Bellinghausen, R., 1986, “Heat Transfer in a Vertical Pipe at Supercritical Pressure,” Eighth International Heat Transfer Conference , Vol. 3 , pp. 957–962.

Sharabi, M., Ambrosini, W., He, S., and Jackson, J. D., 2008, “Prediction of Turbulent Convective Heat Transfer to a Fluid at Supercritical Pressure in Square and Triangular Channels,” Ann. Nucl. Energy, 35 , pp. 993–1005.

[CrossRef]Bazargan, M., Fraser, D., and Chatoorgan, V., 2005, “Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in a Horizontal Round Tube,” ASME J. Heat Transfer, 127 , pp. 897–902.

[CrossRef]Bazargan, M., and Fraser, D., 2009, “Heat Transfer to Supercritical Water in a Horizontal Pipe: Modeling, New Empirical Correlation, and Comparison Against Experimental Data,” ASME J. Heat Transfer, 131 , p. 061702.

[CrossRef]Licht, J., Anderson, M., and Corradini, M., 2009, “Heat Transfer and Fluid Flow Characteristics in Supercritical Pressure Water,” ASME J. Heat Transfer, 131 , p. 072502.

[CrossRef]He, S., Kim, W. S., and Bae, J. H., 2008, “Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube,” Int. J. Heat Mass Transfer, 51 , pp. 4659–4675.

[CrossRef]Cheng, X., Kuang, B., and Yang, Y. H., 2007, “Numerical Analysis of Heat Transfer in Supercritical Water Cooled Flow Channels,” Nucl. Eng. Des., 237 , pp. 240–252.

[CrossRef]Yang, J., Oka, Y., Ishiwatari, Y., Liu, J., and Jewoon, Y., 2007, “Numerical Investigation of Heat Transfer in Upward Flows of Supercritical Water in Circular Tubes and Tight Fuel Rod Bundles,” Nucl. Eng. Des., 237 , pp. 420–430.

[CrossRef]He, S., Kim, W. S., and Jackson, J. D., 2008, “A Computational Study of Convective Heat Transfer to Carbon Dioxide at a Pressure Just Above the Critical Value,” Appl. Therm. Eng., 28 , pp. 1662–1675.

[CrossRef]Jiang, P. -X., Zhang, Y., and Shi, R. -F., 2008, “Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini-Tube,” Int. J. Heat Mass Transfer, 51 , pp. 3052–3056.

[CrossRef]Jiang, P. -X., Zhang, Y., Xu, Y. -J., and Shi, R. -F., 2008, “Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers,” Int. J. Therm. Sci., 47 , pp. 998–1011.

[CrossRef]He, S., Jiang, P. X., Xu, Y. J., Shi, R. F., Kim, W. S., and Jackson, J. D., 2005, “A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube,” Int. J. Therm. Sci., 44 , pp. 521–530.

[CrossRef]He, S., Kim, W. S., Jiang, P. -X., and Jackson, J. D., 2004, “Simulation of Mixed Convection Heat Transfer to Carbon Dioxide at Supercritical Pressure,” J. Mech. Eng. Sci., 218 , pp. 1281–1296.

Howell, J. R., and Lee, S. H., 1999, “Convective Heat Transfer in the Entrance Region of a Vertical Tube for Water Near the Thermodynamic Critical Point,” Int. J. Heat Mass Transfer, 42 , pp. 1177–1187.

[CrossRef]Lee, S. H., and Howell, J. R., 1998, “Turbulent Developing Convective Heat Transfer in a Tube for Fluids Near the Critical Point,” Int. J. Heat Mass Transfer, 41 , pp. 1205–1218.

[CrossRef]Dang, C., and Hihara, E., 2004, “In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide: Part 2, Comparison of Numerical Calculation With Different Turbulence Models,” Int. J. Refrig., 27 , pp. 748–760.

[CrossRef]Antonia, R. A., and Kim, J., 1991, “Turbulent Prandtl Number in the Near-Wall Region of a Turbulent Channel Flow,” Int. J. Heat Mass Transfer, 34 , pp. 1905–1908.

[CrossRef]McEligot, D. M., and Taylor, M. F., 1996, “The Turbulent Prandtl Number in the Near-Wall Region for Low-Prandtl-Number Gas Mixtures,” Int. J. Heat Mass Transfer, 39 , pp. 1287–1295.

[CrossRef]Kays, W. M., and Crawford, M. E., 1993, "*Convective Heat and Mass Transfer*", 3rd ed., McGraw-Hill, New York.

Kim, W. S., He, S., and Jackson, J. D., 2008, “Assessment by Comparison With DNS Data of Turbulence Models Used in Simulations of Mixed Convection,” Int. J. Heat Mass Transfer, 51 , pp. 1293–1312.

[CrossRef]Mohseni, M., and Bazargan, M., 2010, “The Effect of the Low Reynolds Number k-ε Turbulence Models on Simulation of the Enhanced and Deteriorated Convective Heat Transfer to the Supercritical Fluid Flows,” Heat Mass Transfer, doi: 10.1007/s00231-010-0753-9.

Myong, H. K., and Kasagi, N., 1990, “A New Approach to the Improvement of k-ε Turbulence Model for Wall Bounded Shear Flows,” JSME Int. J., 33 , pp. 63–72.

Myong, H. K., Kasagi, N., and Hirata, M., 1989, “Numerical Prediction of Turbulent Pipe Flow Heat Transfer for Various Prandtl Number Fluids With the Improved k-ε Turbulence Model,” JSME Int. J., Ser. II, 32 , pp. 613–622.

Hollingsworth, D. K., Kays, W. M., and Moffat, R. J., 1989, “Measurement and Prediction of the Turbulent Thermal Boundary Layer in Water on Flat and Concave Surface,” Thermosciences Division, Department of Mechanical Engineering, Stanford University, Report No. HMT-41.

Kays, W. M., 1994, “Turbulent Prandtl Number—Where Are We?,” ASME J. Heat Transfer, 116 , pp. 284–295.

[CrossRef]Bae, Y. Y., and Kim, H. Y., 2009, “Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel,” Exp. Therm. Fluid Sci., 33 , pp. 329–339.

[CrossRef]Song, J. H., Kim, H. Y., Kim, H., and Bae, Y. Y., 2008, “Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe,” J. Supercrit. Fluids, 44 , pp. 164–171.

[CrossRef]Bae, Y. -Y., Kim, H. -Y., and Kang, D. -J., 2010, “Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube,” Exp. Therm. Fluid Sci., 34 , pp. 1295–1308.

[CrossRef]Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T., and Yoshida, S., 1972, “Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes,” Int. J. Heat Mass Transfer, 15 , pp. 2575–2593.

[CrossRef]Lemmon, E. W., Peskin, A. P., LcLinden, M. O., and Friend, D. G., 2003, “NIST 12: Thermodynamic and Transport Properties of Pure Fluids,” NIST Standard Reference Database Number 12, Version 5.1, National Institute of Standards and Technology, U.S.A.

Patankar, S. V., 1978, "*Numerical Heat Transfer and Fluid Flow*", Taylor & Francis, London.

Versteeg, H. K., and Malalasekera, W., 1995, "*An Introduction to Computational Fluid Dynamic: The Finite Volume Method*", Longman Group Ltd., England.

FLUENT Inc., 2005, FLUENT 6.2 user’s manual.

Hsu, Y. Y., and Smith, J. M., 1961, “The Effect of Density Variation on Heat Transfer in the Critical Region,” ASME J. Heat Transfer, 82 , pp. 176–182.

Shiralkar, B. S., and Griffith, P., 1970, “The Effect of Swirl, Inlet Condition, Flow Direction and Tube Diameter on Heat Transfer to Fluids at Supercritical Pressure,” ASME J. Heat Transfer, 92 , pp. 465–474.

[CrossRef]Bazargan, M., and Mohseni, M., 2009, “The Significance of the Buffer Zone of Boundary Layer on Convective Heat Transfer to a Vertical Turbulent Flow of a Supercritical Fluid,” J. Supercrit. Fluids, 51 , pp. 221–229.

[CrossRef]McEligot, D. M., Coon, C. W., and Perkins, H. C., 1970, “Relaminarization in Tubes,” Int. J. Heat Mass Transfer, 13 , pp. 431–433.

[CrossRef]Sharabi, M., and Ambrosini, W., 2009, “Discussion of Heat Transfer Phenomena in Fluids at Supercritical Pressure With the Aid of CFD Models,” Ann. Nucl. Energy, 36 , pp. 60–71.

[CrossRef]Oosthuizen, P. H., and Naylor, D., 1999, "*An Introduction to Convective Heat Transfer Analysis*", Int. ed., McGraw-Hill, New York.

Abe, K., Kondoh, T., and Nagano, Y., 1994, “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations,” Int. J. Heat Mass Transfer, 37 , pp. 139–151.

[CrossRef]