Crank, J., 1976, "*The Mathematics of Diffusion*", 2nd ed., Clarendon, Oxford.

Barrer, R. M., 1941, "*Diffusion In and Through Solids*", Cambridge University Press, London.

Jost, W., 1952, "*Diffusion in Solids, Liquids, Gases*", Academic, New York.

Babbitt, J. D., 1950, “On the Differential Equations of Diffusion,” Can J. Res., 28 (A), pp. 449–474.

Carslaw, H. S., and Jaeger, J. C., 1959, "*Conduction of Heat in Solids*", 2nd ed., Clarendon, Oxford.

Morse, P., and Feshbach, H., 1953, "*Methods of Theoretical Physics*", Vols. I and II , McGraw-Hill, New York.

Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B., 1992, "*Heat Conduction Using Green’s Functions*", Hemisphere, New York.

Tuck, B., 1976, “Some Explicit Solutions to the Non-Linear Diffusion Equation,” J. Phys. D: Appl. Phys., 9 (11), pp. 1559–1569.

[CrossRef]Shober, R. A., 1977, “Nonlinear Methods for Solving the Diffusion Equation,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Parlange, J. -Y., Hogarth, W. L., Parlange, M. B., Haverkamp, R., Barry, D. A., Ross, P. J., and Steenhuis, T. S., 1998, “Approximate Analytical Solution of the Nonlinear Diffusion Equation for Arbitrary Boundary Conditions,” Transp. Porous Media, 30 (1), pp. 45–55.

[CrossRef]Nishida, T., 1978, “Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics,” Publ. Math. (Debrecen), 78 (02), pp. 46–53.

Vlad, M. O., and Ross, J., 2002, “Systematic Derivation of Reaction-Diffusion Equations With Distributed Delays and Relations to Fractional Reaction-Diffusion Equations and Hyperbolic Transport Equations: Application to the Theory of Neolithic Transition,” Phys. Rev. E, 66 (6), p. 061908.

[CrossRef]Berger, M. J., and Oliger, J., 1984, “Adaptative Mesh Refinement for Hyperbolic Partial Differential Equations,” J. Comput. Phys., 53 , pp. 484–512.

[CrossRef]Monteiro, E. R., Macedo, E. N., Quaresma, J. N. N., and Cotta, R. M., 2009, “Integral Transform Solution for Hyperbolic Heat Conduction in a Finite Slab,” Int. Commun. Heat Mass Transfer, 36 (4), pp. 297–303.

[CrossRef]Ozisik, M. N., 1980, "*Heat Conduction*", Wiley, New York.

Beck, J. V., 1984, “Green’s Function Solution for Transient Heat Conduction Problems,” Int. J. Heat Mass Transfer, 27 (8), pp. 1235–1244.

[CrossRef]Greenberg, M. D., 1998, "*Advanced Engineering Mathematics*", 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.

Davies, B., 1985, "*Integral Transforms and Their Applications*", 2nd ed., Springer, Berlin.

Debnath, L., and Bhatta, D., 2007, "*Integral Transforms and Their Applications*", 2nd ed., Chapman and Hall, London/CRC, Boca Raton, FL.

Ozisik, M. N., 1968, "*Boundary Value Problems of Heat Conduction*", International Textbook Company, Scranton, PA, p. 18515.

Cotta, R. M., 1993, "*Integral Transforms in Computational Heat and Fluid Flow*", CRC, Boca Raton, FL.

Oldham, K. B., and Spanier, J., 2002, "*The Fractional Calculus*", Dover, New York.

Ölçer, N. Y., 1964, “On the Theory of Conductive Heat Transfer Infinite Regions,” Int. J. Heat Mass Transfer, 7 , pp. 307–314.

[CrossRef]Cotta, R. M., 1994, “Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method,” Int. J. Heat Mass Transfer, 37 (1), pp. 381–393.

[CrossRef]Ölçer, N. Y., 1965, “On the Theory of Conductive Heat Transfer in Finite Regions With Boundary Conditions of Second Kind,” Int. J. Heat Mass Transfer, 8 , pp. 529–556.

[CrossRef]Serfaty, R., and Cotta, R. M., 1990, “Integral Transform Solutions of Diffusion Problems With Nonlinear Equation Coefficients,” Int. Commun. Heat Mass Transfer, 17 , pp. 851–864.

[CrossRef]Cotta, R. M., and Mikhailov, M. D., 1993, “Integral Transform Method,” Appl. Math. Model., 17 , pp. 157–161.

Cotta, R. M., Ungs, M. J., and Mikhailov, M. D., 2003, “Contaminant Transport in Finite Fractured Porous Medium: Integral Transforms and Lumped-Differential Formulations,” Ann. Nucl. Energy, 30 (3), pp. 261–285.

[CrossRef]Naveira, C. P., Lachi, M., Cotta, R. M., and Padet, J., 2007, “Integral Transform Solution of Transient Forced Convection in External Flow,” Int. Commun. Heat Mass Transfer, 34 (6), pp. 703–712.

[CrossRef]de Lima, G. G. C., Santos, C. A. C., Haag, A., and Cotta, R. M., 2007, “Integral Transform Solution of Internal Flow Problems Based on Navier–Stokes Equations and Primitive Variables Formulation,” Int. J. Numer. Methods Eng., 69 (3), pp. 544–561.

[CrossRef]Neto, H. L., Quaresma, J. N. N., and Cotta, R. M., 2006, “Integral Transform Solution for Natural Convection in Three-Dimensional Porous Cavities: Aspect Ratio Effects,” Int. J. Heat Mass Transfer, 49 (23–24), pp. 4687–4695.

[CrossRef]de Barros, F. P. J., Mills, W. B., and Cotta, R. M., 2006, “Integral Transform Solution of a Two-Dimensional Model for Contaminant Dispersion in Rivers and Channels With Spatially Variable Coefficients,” Environ. Modell. Software, 21 (5), pp. 699–709.

[CrossRef]Leibniz, G. W., 1849, “Letter from Hanover, Germany, September 30, 1695, to G. A. L’Hospital,” Leibnizen Mathematische Schriften, 2 , pp. 301–302.

Coimbra, C. F. M., 2003, “Mechanics With Variable Order Differential Operators,” Ann. Phys., 12 (11–12), pp. 692–703.

[CrossRef]Podlubny, I., 1999, "*Fractional Differential Equations*", Academic, San Diego, CA.

Loverro, A., 2004, "*Fractional Calculus: History, Definitions and Applications for the Engineer*", University of Notre Dame, USA, pp. 3659–3661.

Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J., 2006, "*Theory and Applications of Fractional Differential Equations*", 1st ed., Elsevier, Amsterdam, Netherlands.

Soon, C. M., Coimbra, C. F. M., and Kobayashi, M. H., 2005, “The Variable Viscoelasticity Oscillator,” Ann. Phys., 14 (6), pp. 378–389.

[CrossRef]Ramirez, L. E. S., and Coimbra, C. F. M., 2007, “A Variable Order Constitutive Relation for Viscoelasticity,” Ann. Phys., 16 (7–8), pp. 543–552.

[CrossRef]Coimbra, C. F. M., Edwards, D. K., and Rangel, R. H., 1998, “Heat Transfer in a Homogeneous Suspension Including Radiation and History Effects,” J. Thermophys. Heat Transfer, 12 (3), pp. 304–312.

[CrossRef]Coimbra, C. F. M., and Kobayashi, M. H., 2002, “On the Viscous Motion of a Small Particle in a Rotating Cylinder,” J. Fluid Mech., 469 , pp. 257–286.

[CrossRef]Coimbra, C. F. M., L’Esperance, D., Lambert, R. A., Trolinger, J. D., and Rangel, R. H., 1999, “An Experimental Study on Stationary History Effects in High Frequency Stokes Flows,” J. Fluid Mech., 504 , pp. 353–363.

[CrossRef]Lim, E. A., Coimbra, C. F. M., and Kobayashi, M. H., 2005, “Dynamics of a Suspended Particle in Eccentrically Rotating Flows,” J. Fluid Mech., 535 , pp. 101–110.

[CrossRef]Kobayashi, M. H., and Coimbra, C. F. M., 2005, “On the Stability of the Maxey-Riley Equation in Nonuniform Linear Flows,” Phys. Fluids, 17 , p. 113301.

[CrossRef]Kulish, V. V., and Lage, J. L., 2002, “Application of Fractional Calculus to Fluid Mechanics,” ASME J. Fluids Eng., 124 , pp. 803–806.

[CrossRef]Momani, S., and Odibat, Z., 2006, “Analytical Approach to Linear Fractional Partial Differential Equations Arising in Fluid Mechanics,” Phys. Lett. A, 355 , pp. 271–279.

[CrossRef]Aoki, Y., Sen, M., and Paolucci, S., 2007, “Approximation of Transient Temperatures in Complex Geometries Using Fractional Derivatives,” "*Heat Mass Transfer*", Springer-Verlag, Berlin.

Coimbra, C. F. M., and Rangel, R. H., 2000, “Unsteady Heat Transfer in the Harmonic Heating of a Dilute Suspension of Small Particles,” Int. J. Heat Mass Transfer, 43 , pp. 3305–3316.

[CrossRef]Kholpanov, L. P., and Zakiev, S. E., 2005, “Fractional Integro-Differential Analysis of Heat and Mass Transfer,” J. Eng. Phys. Thermophys., 78 (1), pp. 33–46.

[CrossRef]Mills, A. F., 1999, "*Basic Heat and Mass Transfer*", 2nd ed., Prentice-Hall, Upper Saddle River, NJ.

Incropera, F. P., and DeWitt, D. P., 1990, "*Fundamentals of Heat and Mass Transfer*", 3rd ed., Wiley, New York.

Diaz, G., and Coimbra, C. F. M., 2009, “Nonlinear Dynamics and Control of a Variable Order Oscillator With Application to the van del Pol Equation,” Nonlinear Dyn., 56 (1–2), pp. 145–157.

[CrossRef]