Oosthuizen, P. H., and Naylor, D., 1999, "*An Introduction to Convective Heat Transfer Analysis*", McGraw-Hill, New York.

Kays, W. M., Crawford, M. E., and Weigand, B., 2005, "*Convection Heat and Mass Transfer*", 4th ed., McGraw-Hill, New York.

Sleicher, C. A., and Tribus, M., 1956, "*Proceedings of Heat Transfer and Fluid Mechanics Institute*", Stanford University, Stanford, p. 59.

Fiebig, M., 1995, “Vortex Generators for Compact Heat Exchangers,” J. Enhanced Heat Transfer, 2 (1–2), pp. 43–61.

Joardar, A., and Jacobi, A. M., 2005, “Impact of Leading Edge Delta-Wing Vortex Generators on the Thermal Performance of a Flat Tube, Louvered-Fin Compact Heat Exchanger,” Int. J. Heat Mass Transfer, 48 (8), pp. 1480–1493.

[CrossRef]Wang, L. B., Ke, F., Gao, S. D., and Mei, Y. G., 2002, “Local and Average Characteristics of Heat /Mass Transfer Over Flat Tube Bank Fin With Four Vortex Generators Per Tube,” ASME J. Heat Transfer, 124 , pp. 546–552.

[CrossRef]Biswas, G., Fujii, T. D., and Nishino, K., 1996, “Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow,” Int. J. Heat Mass Transfer, 39 , pp. 3441–3451.

[CrossRef]Wang, Q. W., Chen, Q. Y., Wang, L., Zeng, M., Huang, Y. P., and Xiao, Z. J., 2007, “Experimental Study of Heat Transfer Enhancement in Rectangular Narrow Channel With Longitudinal Vortex Generators,” Nucl. Eng. Des., 237 , pp. 686–693.

[CrossRef]Webb, R. L., 2000, “Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness,” ASME J. Heat Transfer, 122 , pp. 134–142.

[CrossRef]Li, L. J., Cui, W. Z., Liao, Q., Xin, M. D., Jen, T. C., and Chen, Q. H., 2005, “Heat Transfer Augmentation in 3D Internally Finned and Microfinned Helical Tube,” Int. J. Heat Mass Transfer, 48 (10), pp. 1916–1925.

[CrossRef]Naphon, P., Nuchjapo, M., and Kurujareon, J., 2006, “Tube Side Heat Transfer Coefficient and Friction Factor Characteristics of Horizontal Tubes With Helical Rib,” Energy Convers. Manage., 47 , pp. 3031–3044.

[CrossRef]Liao, Q., Jen, T. C., Chen, Q. H., Li, L. J., and Cui, W. Z., 2007, “Heat Transfer Performance in 3D Internally Finned Heat Pipe,” Int. J. Heat Mass Transfer, 50 (7–8), pp. 1231–1237.

[CrossRef]Hong, S. W., and Bergles, A. E., 1976, “Augmentation of Laminar Heat Transfer in Tubes by Means of Twisted Tape Inserts,” ASME J. Heat Transfer, 98 , pp. 251–256.

Manglik, R. M., and Bergles, A. E., 1993, “Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I—Laminar Flows,” ASME J. Heat Transfer, 115 , pp. 881–889.

[CrossRef]Agarwal, S. K., and Rajarao, M., 1996, “Heat Transfer Augmentation for the Flow of Viscous Liquid in Circular Tubes Using Twisted Tape Inserts,” Int. J. Heat Mass Transfer, 39 , pp. 3547–3557.

[CrossRef]Patil, A. G., 2000, “Laminar Flow Heat Transfer and Pressure Drop Characteristics of Power-Law Fluids Inside Tubes With Varying Width Twisted Tape Inserts,” ASME J. Heat Transfer, 122 , pp. 143–149.

[CrossRef]Date, A. W., 2000, “Numerical Prediction of Laminar Flow and Heat Transfer in a Tube With Twisted-Tape Insert: Effects of Property Variations and Buoyancy,” J. Enhanced Heat Transfer, 7 , pp. 217–229.

Al-Fahed, S., Chamra, L. M., and Chakroun, W., 1998, “Pressure Drop and Heat Transfer Comparison for Both Microfin Tube and Twisted-Tape Inserts in Laminar Flow,” Exp. Therm. Fluid Sci., 18 (4), pp. 323–333.

[CrossRef]Saha, S. K., Dutta, A., and Dhal, S. K., 2001, “Friction and Heat Transfer Characteristics of Laminar Swirl Flow Through a Circular Tube Fitted With Regularly Spaced Twisted-Tape Elements,” Int. J. Heat Mass Transfer, 44 (22), pp. 4211–4223.

[CrossRef]Manglik, R. M., and Bergles, A. E., 2003, “Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts,” Adv. Heat Transfer, 36 , pp. 183–266.

Eriksson, L. E., 1985, “Practical Three-Dimension Mesh Generation Using Transfinite Interpolation,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 6 (3), pp. 712–741.

Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, "*Numerical Grid Generation, Foundation and Application*", North-Holland, New York, pp. 95–140.

Patankar, S. V., 1980, "*Numerical Heat Transfer and Fluid flow*", Hemisphere, New York, pp. 330–351.

Tao, W. Q., 2001, "*Numerical Heat Transfer*", 2nd ed., Xi’an Jiaotong University Press, Xi’an, China, pp. 485–488.

Lin, Z. M., Teng, S., and Wang, L. B., 2008, “Numerical Study of Conjugate Heat Transfer in a Tube With Twisted Tape Insert,” JP Journal of Heat and Mass Transfer, 2 (3), pp. 279–302.

Chang, L. M., Wang, L. B., Song, K. W., Sun, D. L., and Fan, J. F., 2009, “Numerical Study of the Relationship Between Heat Transfer Enhancement and Absolute Vorticity Flux Along Main Flow Direction in Channel Formed by Flat Tube Bank Fin With Vortex Generators,” Int. J. Heat Mass Transfer, 52 (7–8), pp. 1794–1801.

[CrossRef]Song, K. W., Wang, L. B., and Sun, D. L., 2009, “Convective Heat Transfer and Absolute Vorticity Flux Along Main Flow in a Channel Formed by Flat Tube Bank Fins With Vortex Generators Mounted on Both Fin Surfaces,” J. Enhanced Heat Transfer, 16 (2), pp. 123–139.

[CrossRef]Lin, Z. M., Sun, D. L., and Wang, L. B., “The Relationship Between Absolute Vorticity Flux Along Main Flow and Convection Heat Transfer in a Tube Inserting a Twisted Tape,” Heat Mass Transfer, submitted.