Research Papers: Experimental Techniques

Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays

[+] Author and Article Information
X. L. Liu

George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

L. P. Wang

School for Engineering of Matter,
Transport and Energy,
Arizona State University,
Tempe, AZ 85287

Z. M. Zhang

Fellow ASME
George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: zhuomin.zhang@me.gatech.edu

1Corresponding author.

Manuscript received October 15, 2012; final manuscript received January 13, 2013; published online May 16, 2013. Assoc. Editor: Leslie Phinney.

J. Heat Transfer 135(6), 061602 (May 16, 2013) (8 pages) Paper No: HT-12-1564; doi: 10.1115/1.4023578 History: Received October 15, 2012; Revised January 13, 2013

The present study considers the directional and spectral radiative properties of vertically aligned, heavily doped silicon nanowires for applications as broadband infrared diffuse absorbers. The nanowire array is modeled as a uniaxial medium whose anisotropic dielectric function is based on an effective medium theory. The approximation model is verified by the finite-difference time-domain method. It is found that the radiative properties of this type of nanostructured material could be tailored by controlling the doping concentration, volume filling ratio, and length of the nanowires. Increasing the wire length yields a broadening of the absorption plateau, while increasing the doping concentration results in a shift of the plateau to shorter wavelengths. Moreover, two kinds of omnidirectional absorbers/emitters could be realized based on the doped-silicon nanowire arrays. The first one is a wavelength-tunable wideband absorber, which may be important for applications in thermal imaging and thermophotovoltaic devices. The second acts as a quasi-blackbody in the wavelength region from 3 to 17 μm and, therefore, is promising for use as an absorber in bolometers that measure infrared radiation and as an emitter in space cooling devices that dissipate heat into free space via thermal radiation.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Basu, S., Chen, Y.-B., and Zhang, Z. M., 2007, “Microscale Radiation in Thermophotovoltaic Devices—A Review,” Int. J. Energy Res., 31, pp. 689–716. [CrossRef]
Zhang, Z. M., and Ye, H., “Measurements of Radiative Properties of Engineered Micro/Nanostructures,” Ann. Rev. Heat Transfer (in press). [CrossRef]
Zhang, Z. M., and Wang, L. P., “Measurements and Modeling of the Spectral and Directional Radiative Properties of Micro/Nanostructured Materials,” Int. J. Thermophys. (in press). [CrossRef]
Heinzel, A., Boerner, V., Gombert, A., Blasi, B., Wittwer, V., and Luther, J., 2000, “Radiation Filters and Emitters for the NIR Based on Periodically Structured Metal Surfaces,” J. Mod. Opt., 47, pp. 2399–2419. [CrossRef]
Greffet, J.-J., Carminati, R., Joulain, K., Mulet, J.-P., Mainguy, S., and Chen, Y., 2002, “Coherent Emission of Light by Thermal Sources,” Nature, 416, pp. 61–64. [CrossRef] [PubMed]
Marquier, F., Joulain, K., Mulet, J.-P., Carminati, R., and Greffet, J.-J., 2004, “Engineering Infrared Emission Properties of Silicon in the Near Field and the Far Field,” Opt. Commun., 237, pp. 379–388. [CrossRef]
Narayanaswamy, A., and Chen, G., 2004, “Thermal Emission Control With One-Dimensional Metallodielectric Photonic Crystals,” Phys. Rev. B, 70, p. 125101. [CrossRef]
Lee, B. J., Chen, Y.-B., and Zhang, Z. M., 2008, “Surface Waves Between Metallic Films and Truncated Photonic Crystals Observed With Reflectance Spectroscopy,” Opt. Lett., 33, pp. 204–206. [CrossRef] [PubMed]
Maruyama, S., Kashiwa, T., Yugami, H., and Esashi, M., 2001, “Thermal Radiation From Two-Dimensionally Confined Modes in Microcavities,” Appl. Phys. Lett., 79, pp. 1393–1395. [CrossRef]
Dahan, N., Niv, A., Biener, G., Gorodetski, Y., Kleiner, V., and Hasman, E., 2008, “Extraordinary Coherent Thermal Emission From SiC Due to Coupled Resonant Cavities,” ASME J. Heat Trans., 130(11), p. 112401. [CrossRef]
Wang, L. P., Lee, B. J., Wang, X. J., and Zhang, Z. M., 2009, “Spatial and Temporal Coherence of Thermal Radiation in Asymmetric Fabry-Perot Resonance Cavities,” Int. J. Heat Mass Transfer, 52, pp. 3024–3031. [CrossRef]
Wang, L. P., Basu, S., and Zhang, Z. M., 2012, “Direct Measurement of Thermal Emission From a Fabry-Perot Cavity Resonator,” ASME J. Heat Trans., 134(7), p. 072701. [CrossRef]
Chen, Y. B., and Zhang, Z. M., 2007, “Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators,” Opt. Commun., 269, pp. 411–417. [CrossRef]
Chen, Y. B., and Zhang, Z. M., 2008, “Heavily Doped Silicon Complex Gratings as Wavelength-Selective Absorbing Surfaces,” J. Phys. D: Appl. Phys., 41, p. 095406. [CrossRef]
Lee, B. J., Wang, L. P., and Zhang, Z. M., 2008, “Coherent Thermal Emission by Excitation of Magnetic Polaritons Between Periodic Strips and a Metallic Film,” Opt. Express, 16, pp. 11328–11336. [CrossRef] [PubMed]
Wang, L. P., and Zhang, Z. M., 2012, “Wavelength-Selective and Diffuse Emitter Enhanced by Magnetic Polaritons for Thermophotovoltaics,” Appl. Phys. Lett., 100, p. 063902. [CrossRef]
Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., and Padilla, W. J., 2008, “Perfect Metamaterial Absorber,” Phys. Rev. Lett., 100, p. 207402. [CrossRef] [PubMed]
Liu, N., Mesch, M., Weiss, T., Hentschel, M., and Giessen, H., 2010, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano. Lett., 10, pp. 2342–2348. [CrossRef] [PubMed]
Liu, X. L., Tyler, T., Starr, T., Starr, A. F., Jokerst, N. M., and Padilla, W. J., 2011, “Taming the Blackbody With Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett., 107, p. 045901. [CrossRef] [PubMed]
Chen, S. Q., Cheng, H., Yang, H. F., Li, J. J., Duan, X. Y., Gu, C. Z., and Tian, J. G., 2011, “Polarization Insensitive and Omnidirectional Broadband Near Perfect Planar Metamaterial Absorber in the Near Infrared Regime,” Appl. Phys. Lett., 99, p. 253104. [CrossRef]
Cui, Y., Xu, J., Fung, K. H., Jin, Y., Kumar, A., He, S., and Fang, N. X., 2011, “A Thin Film Broadband Absorber Based on Multi-Sized Nanoantennas,” Appl. Phys. Lett., 99, p. 253101. [CrossRef]
Hendrickson, J., Guo, J., Zhang, B., Buchwald, W., and Soref, R., 2012, “Wideband Perfect Light Absorber at Midwave Infrared Using Multiplexed Metal Structures,” Opt. Lett., 37, pp. 371–373. [CrossRef] [PubMed]
Wang, L. P., and Zhang, Z. M., “Measurement of Coherent Thermal Emission Due to Magnetic Polaritons in Subwavelength Microstructures,” ASME J. Heat Trans. (accepted).
Yang, Z. P., Ci, L. J., Bur, J. A., Lin, S. Y., and Ajayan, P. M., 2008, “Experimental Observation of an Extremely Dark Material Made by a Low-Density Nanotube Array,” Nano Lett., 8, pp. 446–451. [CrossRef] [PubMed]
Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D. N., Yumura, M., and Hata, K., 2009, “A Black Body Absorber From Vertically Aligned Single-Walled Carbon Nanotubes,” Proc. Natl. Acad. Sci. U.S.A., 106, pp. 6044–6047. [CrossRef] [PubMed]
Lehman, J., Sanders, A., Hanssen, L., Wilthan, B., Zeng, J. A., and Jensen, C., 2010, “Very Black Infrared Detector From Vertically Aligned Carbon Nanotubes and Electric-Field Poling of Lithium Tantalate,” Nano Lett., 10, pp. 3261–3266. [CrossRef] [PubMed]
Wang, X. J., Wang, L. P., Adewuyi, O. S., Cola, B. A., and Zhang, Z. M., 2010, “Highly Specular Carbon Nanotube Absorbers,” Appl. Phys. Lett., 97, p. 163116. [CrossRef]
Ye, H., Wang, X. J., Lin, W., Wong, C. P., and Zhang, Z. M., 2012, “Infrared Absorption Coefficients of Vertically Aligned Carbon Nanotube Films,” Appl. Phys. Lett., 101, p. 141909. [CrossRef]
Wu, Y., Cui, Y., Huynh, L., Barrelet, C. J., Bell, D. C., and Lieber, C. M., 2004, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett., 4, pp. 433–436. [CrossRef]
Ke, Y., Weng, X., Redwing, J. M., Eichfeld, C. M., Swisher, T. R., Mohney, S. E., and Habib, Y. M., 2009, “Fabrication and Electrical Properties of Si Nanowires Synthesized by Al Catalyzed Vapor-Liquid-Solid Growth,” Nano Lett., 9, pp. 4494–4499. [CrossRef] [PubMed]
Yu, D. P., Bai, Z. G., Ding, Y., Hang, Q. L., Zhang, H. Z., Wang, J. J., Zou, Y. H., Qian, W., Xiong, G. C., Zhou, H. T., and Feng, S. Q., 1998, “Nanoscale Silicon Wires Synthesized Using Simple Physical Evaporation,” Appl. Phys. Lett., 72, pp. 3458–3460. [CrossRef]
Colli, A., Fasoli, A., Beecher, P., Servati, P., Pisana, S., Fu, Y., Flewitt, A. J., Milne, W. I., Robertson, J., Ducati, C., De Franceschi, S., Hofmann, S., and Ferrari, A. C., 2007, “Thermal and Chemical Vapor Deposition of Si Nanowires: Shape Control, Dispersion, and Electrical Properties,” J. Appl. Phys., 102, p. 034302. [CrossRef]
Mallet, J., Molinari, M., Martineau, F., Delavoie, F., Fricoteaux, P., and Troyon, M., 2008, “Growth of Silicon Nanowires of Controlled Diameters by Electrodeposition in Ionic Liquid at Room Temperature,” Nano Lett., 8, pp. 3468–3474. [CrossRef] [PubMed]
Huang, Z., Fang, H., and Zhu, J., 2007, “Fabrication of Silicon Nanowire Arrays With Controlled Diameter, Length, and Density,” Adv. Mater., 19, pp. 744–748. [CrossRef]
Choi, W. K., Liew, T. H., Dawood, M. K., Smith, H. I., Thompson, C. V., and Hong, M. H., 2008, “Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching,” Nano Lett., 8, pp. 3799–3802. [CrossRef] [PubMed]
Hsu, C. M., Connor, S. T., Tang, M. X., and Cui, Y., 2008, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett., 93, p. 133109. [CrossRef]
Zhang, M. L., Peng, K. Q., Fan, X., Jie, J. S., Zhang, R. Q., Lee, S. T., and Wong, N. B., 2008, “Preparation of Large-Area Uniform Silicon Nanowires Arrays Through Metal-Assisted Chemical Etching,” J. Phys. Chem. C, 112, pp. 4444–4450. [CrossRef]
Wang, W., Li, D., Tian, M., Lee, Y.-C., and Yang, R. G., 2012, “Wafer-Scale Fabrication of Silicon Nanowire Arrays With Controllable Dimensions,” Appl. Surf. Sci., 258, pp. 8649–8655. [CrossRef]
Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, McGraw-Hill, New York.
Basu, S., Lee, B. J., and Zhang, Z. M., 2010, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” ASME J. Heat Trans., 132(2), p. 023301. [CrossRef]
Wang, X. J., Abell, J. L., Zhao, Y. P., and Zhang, Z. M., 2012, “Angle-Resolved Reflectance of Obliquely Aligned Silver Nanorods,” Appl. Opt., 51, pp. 1521–1531. [CrossRef] [PubMed]
Wang, X. J., 2012, “Study of the Radiative Properties of Aligned Carbon Nanotubes and Silver Nanorods,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
Wang, H., Liu, X. L., Wang, L. P., and Zhang, Z. M., 2013, “Anisotropic Optical Properties of Silicon Nanowire Arrays Based on Effective Medium Calculation,” Int. J. Thermal Sci., 65, pp. 62–69. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic of a D-SiNWs array (medium 2) on a Si film (medium 3), where the top and bottom media (1 and 4) are assumed to be air: (a) cross-section view; (b) top view

Grahic Jump Location
Fig. 2

Comparison of the spectral absorptance of a freestanding D-SiNWs array, with H2 = 100 μm and N = 1020 cm-3, predicted from the EMT and the FDTD simulation: (a) normal incidence for filling ratios f = 0.15 and 0.30; (b) incidence angle at 30 deg for both TE and TM waves with f = 0.15

Grahic Jump Location
Fig. 3

Optical constants of doped silicon and D-SiNWs for both ordinary and extraordinary waves with a volume filling ratio of 0.15 and a doping level of 1020 cm-3: (a) the refractive index; (b) the extinction coefficient

Grahic Jump Location
Fig. 4

Dependence of the resonance wavelength on the doping concentration for f = 0.15 and 0.30

Grahic Jump Location
Fig. 7

Contour plots of the absorptance as a function of wavelength and incidence angle for (a) TE waves; (b) TM waves. The parameters are the same as those for Fig. 5.

Grahic Jump Location
Fig. 6

Parametric effects on the absorptance of D-SiNW arrays: (a) thickness; (b) volume filling ratio; (c) doping level. The base set of parameters is H2 = 100 μm, f = 0.15, and N = 1020 cm-3.

Grahic Jump Location
Fig. 5

Absorptance at normal incidence for a freestanding D-SiNW array (f = 0.15) compared to a D-Si film with the same thickness (100 μm) and doping concentration of 1020 cm-3

Grahic Jump Location
Fig. 9

Angular dependence of the absorptance for both TE (right side) and TM (left side) waves at representative wavelengths: λ = 6 μm (blue dotted curve), 10 μm (red solid), and 16 μm (black dashed)

Grahic Jump Location
Fig. 8

Spectral absorptance for D-SiNWs on D-Si substrate at normal incidence: (a) comparison of the EMT and FDTD results (note that the y-scale is from 0.7 to 1.0); (b) effect of substrate thickness



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In