Research Papers: Radiative Heat Transfer

First Principles and Finite Element Predictions of Radiative Properties of Nanostructure Arrays: Single-Walled Carbon Nanotube Arrays

[+] Author and Article Information
Aaron Sisto, Timothy S. Fisher

School of Mechanical Engineering and
Birck Nanotechnology Center,
Purdue University,
West Lafayette, IN 47907

Xiulin Ruan

School of Mechanical Engineering and Birck Nanotechnology Center,
Purdue University,
West Lafayette, IN 47907
e-mail: ruan@purdue.edu

1Current address: School of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

2Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 24, 2012; final manuscript received January 18, 2014; published online March 10, 2014. Assoc. Editor: He-Ping Tan.

J. Heat Transfer 136(6), 062702 (Mar 10, 2014) (6 pages) Paper No: HT-12-1305; doi: 10.1115/1.4026552 History: Received June 24, 2012; Revised January 18, 2014

Recent advances in nanofabrication technology have facilitated the development of arrays of nanostructures in the classical or quantum confinement regime, e.g., single-walled carbon nanotube (SWCNT) arrays with long-range order across macroscopic dimensions. So far, an accurate generalized method of modeling radiative properties of these systems has yet to be realized. In this work, a multiscale computational approach combining first-principles methods based on density functional theory (DFT) and classical electrodynamics simulations based on the finite element method (FEM) is described and applied to the calculations of optical properties of macroscopic SWCNT arrays. The first-principles approach includes the use of the GW approximation and Bethe–Salpeter methods to account for excited electron states, and the accuracy of these approximations is assessed through evaluation of the absorption spectra of individual SWCNTs. The fundamental mechanisms for the unique characteristics of extremely low reflectance and high absorptance in the near-IR are delineated. Furthermore, opportunities to tune the optical properties of the macroscopic array are explored.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., 2007, “Silicon Nanowire Solar Cells,” Appl. Phys. Lett., 91(23), p. 233117. [CrossRef]
Yang, Z. P., Ci, L. J., Bur, J. A., Lin, S. Y., and Ajayan, P. M., 2008, “Experimental Observation of an Extremely Dark Material Made by a Low-Density Nanotube Array,” Nano Lett., 8(2), pp. 446–451. [CrossRef] [PubMed]
Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., and Johnson, J. C., 2010, “Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells,” Chem. Rev., 110(11), pp. 6873–6890. [CrossRef] [PubMed]
Bao, H., Ruan, X. L., and Fisher, T. S., 2010, “Optical Properties of Ordered Vertical Arrays of Multi-Walled Carbon Nanotubes From FDTD Simulations,” Opt. Express, 18(6), pp. 6347–6359. [CrossRef] [PubMed]
Bao, H., and Ruan, X. L., 2010, “Optical Absorption Enhancement in Disordered Vertical Silicon Nanowire Arrays for Photovoltaic Applications,” Opt. Lett., 35(20), pp. 3378–3380. [CrossRef] [PubMed]
Maschmann, M. R., Franklin, A. D., Amama, P. B., Zakharov, D. N., Stach, E. A., Sands, T. D., and Fisher, T. S., 2006, “Vertical Single- and Double-Walled Carbon Nanotubes Grown From Modified Porous Anodic Alumina Templates,” Nanotechnology, 17(15), pp. 3925–3929. [CrossRef]
Kang, S. J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M. A., Rotkin, S. V., and Rogers, J. A., 2007, “High-Performance Electronics Using Dense, Perfectly Aligned Arrays of Single-Walled Carbon Nanotubes,” Nat. Nanotechnol., 2(4), pp. 230–236. [CrossRef] [PubMed]
Nunes, C., Teixeira, V., Collares-Pereira, M., Monteiro, A., Roman, E., and Martin-Gago, J., 2002, “Deposition of Pvd Solar Absorber Coatings for High-Efficiency Thermal Collectors,” Vacuum, 67(3-4), pp. 623–627. [CrossRef]
Wang, Y., Kempa, K., Kimball, B., Carlson, J. B., Benham, G., Li, W. Z., Kempa, T., Rybczynski, J., Herczynski, A., and Ren, Z. F., 2004, “Receiving and Transmitting Light-Like Radio Waves: Antenna Effect in Arrays of Aligned Carbon Nanotubes,” Appl. Phys. Lett., 85(13), pp. 2607–2609. [CrossRef]
Itkis, M. E., Borondics, F., Yu, A. P., and Haddon, R. C., 2006, “Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films,” Science, 312(5772), pp. 413–416. [CrossRef] [PubMed]
Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D. N., Yumura, M., and Hata, K., 2009, “A Black Body Absorber From Vertically Aligned Single-Walled Carbon Nanotubes,” Proc. Natl. Acad. Sci. U.S.A., 106(15), pp. 6044–6047. [CrossRef] [PubMed]
Maschmann, M. R., Franklin, A. D., Sands, T. D., and Fisher, T. S., 2007, “Optimization of Carbon Nanotube Synthesis From Porous Anodic Al-Fe-Al Templates,” Carbon, 45(11), pp. 2290–2296. [CrossRef]
Patil, N., Deng, J., Mitra, S., and Wong, H. S. P., 2009, “Circuit-Level Performance Benchmarking and Scalability Analysis of Carbon Nanotube Transistor Circuits,” IEEE Trans. Nanotechnol., 8(1), pp. 37–45. [CrossRef]
Li, Z. M., Tang, Z. K., Liu, H. J., Wang, N., Chan, C. T., Saito, R., Okada, S., Li, G. D., Chen, J. S., Nagasawa, N., and Tsuda, S., 2001, “Polarized Absorption Spectra of Single-Walled 4 Angstrom Carbon Nanotubes Aligned in Channels of an Alpo4-5 Single Crystal,” Phys. Rev. Lett., 87(12), p. 127401. [CrossRef] [PubMed]
Lidorikis, E., and Ferrari, A. C., 2009, “Photonics With Multiwall Carbon Nanotube Arrays,” ACS Nano, 3(5), pp. 1238–1248. [CrossRef] [PubMed]
Spataru, C. D., Ismail-Beigi, S., Benedict, L. X., and Louie, S. G., 2004, “Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett., 92(7), p. 077402. [CrossRef] [PubMed]
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
Ando, T., 1997, “Excitons in Carbon Nanotubes,” J. Phys. Soc. Jpn., 66(4), pp. 1066–1073. [CrossRef]
Rohlfing, M., and Louie, S. G., 2000, “Electron-Hole Excitations and Optical Spectra From First Principles,” Phys. Rev. B, 62(8), pp. 4927–4944. [CrossRef]
Hybertsen, M. S., and Louie, S. G., 1986, “Electron Correlation in Semiconductors and Insulators—Band-Gaps and Quasi-Particle Energies,” Phys. Rev.ew B, 34(8), pp. 5390–5413. [CrossRef]
Ch.Hafner, J.Smajic, M.Agio, 2010, “Numerical Methods for the Electrodynamic Analysis of Nanostructures,” Nanoclusters and Nanostructured Surfaces, A. K.Ray, ed., Stevenson Ranch, CA: American Scientific Publishers, Valencia, CA.
Stanton, J. F., Bartlett, R. J., 2003, “The Equation of Motion Coupled-Cluster Method. A Systematic Biorthogonal Approach to Molecular Excitation Energies, Transition Probabilities and Excited State Properties,” J. Chem. Phys., 98(9), pp. 7029–7039. [CrossRef]
Dreuw, A., Head-Gordon, M., 2005, “Single-Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules,” Chem. Rev., 105(11), pp. 4009–4037. [CrossRef] [PubMed]
Burke, K., Weschnik, J., Gross, E. K. U., 2005, “Time-Dependent Density Functional Theory: Past, Present and Future,” J. Chem. Phys., 123(6), p. 062206 [CrossRef]
Troullier, N., and Martins, J. L., 1991, “Efficient Pseudopotentials for Plane-Wave Calculations,” Phys. Rev. B, 43(3), pp. 1993–2006. [CrossRef]
Ismail-Beigi, S., 2006, “Truncation of Periodic Image Interactions for Confined Systems,” Phys. Rev. B, 73(23), p. 233103. [CrossRef]
Koledintseva, M. Y., Wu, J., Zhang, J. M., Drewniak, J. L., and Rozanov, K. N., 2004, “Representation of Permittivity for Multiphase Dielectric Mixtures in FDTD Modeling,” 2004 International Symposium on Electromagnetic Compatibility, Symposium Record 1-3, pp. 309–314.
Bachilo, S. M., Strano, M. S., Kittrell, C.Hauge, R. H., Smalley, R. R., Weisman, R. B., 2002, “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes,” Science, 298(5602) pp. 2361–2366 [CrossRef] [PubMed]
Deslippe, J., Spataru, C. D., Prendergast, D., and Louie, S. G., 2007, “Bound Excitons in Metallic Single-Walled Carbon Nanotubes,” Nano Lett., 7(6), pp. 1626–1630. [CrossRef] [PubMed]
Fantini, C., Jorio, A., Souza, M., Strano, M. S., Dresselhaus, M. S., and Pimenta, M. A., 2004, “Optical Transition Energies for Carbon Nanotubes From Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett., 93(14), p. 147406. [CrossRef]
Ajiki, H., and Ando, T., 1994, “Aharonov-Bohm Effect in Carbon Nanotubes,” Physica B, 201, pp. 349–352. [CrossRef]
Kozinsky, B., and Marzari, N., 2006, “Static Dielectric Properties of Carbon Nanotubes From First Principles,” Phys. Rev. Lett., 96(16), p. 166801. [CrossRef]
Marinopoulos, A. G., Reining, L., Rubio, A., and Vast, N., 2003, “Optical and Loss Spectra of Carbon Nanotubes: Depolarization Effects and Intertube Interactions,” Phys. Rev. Lett., 91(4), p. 046402. [CrossRef] [PubMed]
Murakami, Y., Einarsson, E., Edamura, T., and Maruyama, S., 2005, “Polarization Dependence of the Optical Absorption of Single-Walled Carbon Nanotubes,” Phys. Rev. Lett., 94(8), p. 087402. [CrossRef] [PubMed]
Garcia-Vidal, F. J., Pitarke, J. M., and Pendry, J. B., 1997, “Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes,” Phys. Rev. Lett., 78(22), pp. 4289–4292. [CrossRef]
Datta, S., Chan, C. T., Ho, K. M., and Soukoulis, C. M., 1993, “Effective Dielectric-Constant of Periodic Composite Structures,” Phys. Rev. B, 48(20), pp. 14936–14943. [CrossRef]
Einarsson, E., Murakami, Y., Kadowaki, M., Duong, H. M., Inoue, M., and Maruyama, S., 2006, “Production and Applications of Vertically Aligned Single-Walled Carbon Nanotubes,” Therm. Sci. Eng., 14(3), pp. 47–49. [CrossRef]


Grahic Jump Location
Fig. 1

A sketch of the SWCNT array structure and the incident angles θ

Grahic Jump Location
Fig. 2

GW-BSE dielectric function of SWCNTs for the s-polarization: (a) imaginary part and (b) real part, with a broadening of 0.80 eV

Grahic Jump Location
Fig. 3

GW-BSE imaginary part of the dielectric function of SWCNTs for the p-polarization with a broadening of 0.80 eV

Grahic Jump Location
Fig. 4

(a) Imaginary part of the dielectric function for s-polarized light with varying fraction of metallic CNTs, fm, relative to the total number of CNTs, (b) effective optical properties of 1 μm thick slab and incidence angle of 45 deg, and (c) effective real index of refraction for a macroscopic array for the p-polarized light

Grahic Jump Location
Fig. 5

Predicted reflectance of the macroscopic array as a function of incidence angle, as well as the measured spectral reflectance data from Ref. [11]. Both calculations and experiments refer to a vertically aligned array with tilt angle of 20 deg.

Grahic Jump Location
Fig. 6

(a) Calculated absorptance for varying array thickness and (b) absorbance of the macroscopic array as a function of array thickness. The inset is the measured absorbance corresponding to experiments in Ref. [37]. Both experiment and theory correspond to a wavelength of 488 nm.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In