Research Papers: Micro/Nanoscale Heat Transfer

Influence of Prestress Fields on the Phonon Thermal Conductivity of GaN Nanostructures

[+] Author and Article Information
Linli Zhu

Department of Engineering Mechanics,
School of Aeronautics and Astronautics,
Zhejiang University,
Hangzhou 310027,
Zhejiang, China
e-mail: llzhu@zju.edu.cn

Haihui Ruan

Department of Mechanical Engineering,
The Hong Kong Polytechnic University,
Kowloon, Hong Kong, China
e-mail: haihui.ruan@polyu.edu.hk

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 4, 2014; final manuscript received July 6, 2014; published online August 5, 2014. Assoc. Editor: Robert D. Tzou.

J. Heat Transfer 136(10), 102402 (Aug 05, 2014) (7 pages) Paper No: HT-14-1060; doi: 10.1115/1.4028023 History: Received February 04, 2014; Revised July 06, 2014

The phonon thermal conductivity of Gallium nitride (GaN) nanofilms and nanowires under prestress fields are investigated theoretically. In the framework of elasticity theory, the phonon dispersion relations of spatially confined GaN nanostructures are achieved for different phonon modes. The acoustoelastic effects stemmed from the preexisting stresses are taken into account in simulating the phonon properties and thermal conductivity. Our theoretical results show that the prestress fields can alter the phonon properties such as the phonon dispersion relation and phonon group velocity dramatically, leading to the change of thermal conductivity in GaN nanostructures. The phonon thermal conductivity is able to be enhanced or reduced through controlling the directions of prestress fields operated on the GaN nanofilms and nanowires. In addition, the temperature and size-dependence of thermal conductivity of GaN nanostructures will be sensitive to the direction and strength of those prestress fields. This work will be helpful in controlling the phonon thermal conductivity based on the strain/stress engineering in GaN nanostructures-based electronic devices and systems.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Balandin, A. A., Pokatilov, E. P., and Nika, D. L., 2007, “Phonon Engineering in Hetero- and Nanostructures,” J. Nanoelectron. Optoelectron., 2, pp. 140–170. [CrossRef]
Tian, Z. T., Lee, S., and Chen, G., 2013, “Heat Transfer in Thermoelectric Materials and Devices,” ASME J. Heat Transfer, 135(6), p. 061605. [CrossRef]
Huang, Y., Duan, X., Cui, Y., and Lieber, C. M., 2002, “Gallium Nitride Nanowire Nanodevices,” Nano Lett., 2, pp. 101–104. [CrossRef]
Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H., and Yang, P., 2003, “Single-Crystal Gallium Nitride Nanotubes,” Nature, 422, pp. 599–602. [CrossRef]
Gradečak, S., Qian, F., Li, Y., Park, H., and Lieber, C. M., 2005, “GaN Nanowire Lasers With Low Lasing Thresholds,” Appl. Phys. Lett., 87, p. 173111. [CrossRef]
Mohammad, S. N., Salvador, A. A., and Morkoc, H., 1995, “Emerging Gallium Nitride Based Devices,” Proc. IEEE, 83, pp. 1306–1355. [CrossRef]
Chung, K., Lee, C. H., and Yi, G. C., 2010, “Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices,” Science, 330, pp. 655–657. [CrossRef]
Baliga, B. J., 2013, “Gallium Nitride Devices for Power Electronic Applications,” Semicond. Sci. Technol., 28, p. 074011. [CrossRef]
Shenai, K., Shah, K., and Xing, H., 2010, “Performance Evaluation of Silicon and Gallium Nitride Power FETs for DC/DC Power Converter Applications,” Proceedings of the IEEE NAECON Conference, Fairborn, OH, pp. 317–321.
Babic, D. I., 2013, “Thermal Analysis of AlGaN/GaN HEMTs Using Angular Fourier-Series Expansion,” ASME J. Heat Transfer, 135(11), p. 111001. [CrossRef]
Kuykendall, T., Pauzauskie, P. J., Zhang, Y., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P., 2004, “Crystollographic Alignment of High Density Gallium Nitride Nanowire Arrays,” Nat. Mater., 3, pp. 524–528. [CrossRef]
Liu, B., Bando, Y., Tang, C., Xu, F., and Golberg, D., 2005, “Quasi-Aligned Single-Crystalline GaN Nanowire Arrays,” Appl. Phys. Lett., 87, p. 073106. [CrossRef]
Sichel, E. K., and Pankove, J. I., 1977, “Thermal Conductivity of GaN, 25–360 K,” J. Phys. Chem. Solids, 38, p. 330. [CrossRef]
Guthy, C., Nam, C. Y., and Fischer, J. E., 2008, “Unusually Low Thermal Conductivity of Gallium Nitride Nanowires,” J. Appl. Phys., 103, p. 064319. [CrossRef]
Slack, G. A., 1973, “Nonmetallic Crystals With High Thermal Conductivity,” J. Phys. Chem. Solids, 34, pp. 321–335. [CrossRef]
Zou, J., 2010, “Lattice Thermal Conductivity of Freestanding Gallium Nitride Nanowires,” J. Appl. Phys., 108, p. 034324. [CrossRef]
Zhou, G., and Li, L. L., 2012, “Phonon Thermal Conductivity of GaN Nanotubes,” J. Appl. Phys., 112, p. 014317. [CrossRef]
AlShaikhi, A., Barman, S., and Srivastava, G. P., 2010, “Theory of the Lattice Thermal Conductivity in Bulk and Films of GaN,” Phys. Rev. B, 81, p. 195320. [CrossRef]
Jung, K., Cho, M., and Zhou, M., 2012, “Thermal and Mechanical Response of [0001]-Oriented GaN Nanowires During Tensile Loading and Unloading,” J. Appl. Phys., 112, p. 083522. [CrossRef]
Lindsay, L., Broido, D. A., and Reinecke, T. L., 2012, “Thermal Conductivity and Large Isotope Effect in GaN From First Principles,” Phys. Rev. Lett., 109, p. 095901. [CrossRef]
Seo, H. W., Bae, S. Y., Park, J., Yang, H., and Park, K. S., 2002, “Strained Gallium Nitride Nanowires,” J. Chem. Phys., 116, pp. 9492–9499. [CrossRef]
Wedler, G., Walz, J., Hesjedal, T., Chilla, E., and Koch, R., 1998, “Stress and Relief of Misfit Strain of Ge/Si (001),” Phys. Rev. Lett., 80, pp. 2382–2385. [CrossRef]
Chang, C. L., Jaob, J. Y., Hoa, W. Y., and Wang, D. Y., 2007, “Influence of Bi-Layer Period Thickness on the Residual Stress, Mechanical, and Tribological Properties of Nanolayered TiAlN/CrN Multi-Layer Coatings,” Vacuum, 81, pp. 604–609. [CrossRef]
Venkatachalam, A., James, W. T., and Graham, S., 2011, “Electro-Thermo-Mechanical Modeling of GaN-Based HFETs and MOSHFETs,” Semicond. Sci. Technol., 26, p. 085027. [CrossRef]
Choi, S., Heller, E., Dorsey, D., Vetury, R., and Graham, S., 2013, “The Impact of Mechanical Stress on the Degradation of AlGaN/GaN High Electron Mobility Transistors,” J. Appl. Phys., 114, p. 164501. [CrossRef]
Silvestri, M., Uren, M. J., Killat, N., Marcon, D., and Kuball, M., 2013, “Localization of Off-Stress-Induced Damage in AlGaN/GaN High Electron Mobility Transistors by Means of Low Frequency 1/f Noise Measurements,” Appl. Phys. Lett., 103, p. 043506. [CrossRef]
Abramson, A. R., Tien, C. L., and Majumdar, A., 2002, “Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study,” ASME J. Heat Transfer, 124(5), pp. 963–970. [CrossRef]
Picu, R. C., Borca-Tasciuc, T., and Pavel, M. C., 2003, “Strain and Size Effects on Heat Transport in Nanostructures,” J. Appl. Phys., 93, pp. 3535–3539. [CrossRef]
Bhowmick, S., and Shenoy, V. B., 2006, “Effect of Strain on the Thermal Conductivity of Solids,” J. Chem. Phys., 125, p. 164513. [CrossRef]
Xu, Y., and Li, G., 2009, “Strain Effect Analysis on Phonon Thermal Conductivity of Two-Dimensional Nanocomposites,” J. Appl. Phys., 106, p. 114302. [CrossRef]
Li, X. B., Maute, K., Dunn, M. L., and Yang, R. G., 2010, “Strain Effects on the Thermal Conductivity of Nanostructures,” Phys. Rev. B, 81, p. 245318. [CrossRef]
Paul, A., and Klimeck, G., 2011, “Strain Effects on the Phonon Thermal Properties of Ultra-Scaled Si Nanowires,” Appl. Phys. Lett., 99, p. 083115. [CrossRef]
Jung, K., Cho, M., and Zhou, M., 2011, “Strain Dependence of Thermal Conductivity of [0001]-Oriented GaN Nanowires,” Appl. Phys. Lett., 98, p. 041909. [CrossRef]
Loh, G. C., Teo, E. H. T., and Tay, B. K., 2012, “Phononic and Structural Response of Strained Wurtzite-Gallium Nitride Nanowires,” J. Appl. Phys., 111, p. 103506. [CrossRef]
Alam, M. T., Manoharan, M. P., Haque, M. A., Muratore, C., and Voevodin, A., 2012, “Influence of Strain on Thermal Conductivity of Silicon Nitride Thin Films,” J. Micromech. Microeng., 22, p. 045001. [CrossRef]
Bannov, N., Aristov, V., and Mitin, V., 1995, “Electron Relaxation Times Due to the Deformation-Potential Interaction of Electrons With Confined Acoustic Phonons in a Free-Standing Quantum Well,” Phys. Rev. B, 51, pp. 9930–9942. [CrossRef]
Balandin, A., and Wang, K. L., 1998, “Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well,” Phys. Rev. B, 58, pp. 1544–1549. [CrossRef]
Zou, J., Lange, X., and Richardson, C., 2006, “Lattice Thermal Conductivity of Nanoscale AlN/GaN/AlN Heterostructures: Effects of Partial Phonon Spatial Confinement,” J. Appl. Phys., 100, p. 104309. [CrossRef]
Morse, R. W., 1949, “The Dispersion of Compressional Waves in Isotropic Rods of Rectangular Cross Section,” Ph.D. thesis, Brown University, Providence, RI.
Martin, P., Aksamija, Z., Pop, E., and Ravaioli, U., 2009, “Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires,” Phys. Rev. Lett., 102, p. 125503. [CrossRef]
Łepkowski, S. P., Majewski, J. A., and Jurczak, G., 2005, “Nonlinear Elasticity in III-N Compounds: Ab Initio Calculations,” Phys. Rev. B, 72, p. 245201. [CrossRef]
Łepkowski, S. P., and Gorczyca, I., 2011, “Ab Initio Study of Elastic Constants in InxGa1-xN and InxAl1-xN Wurtzite Alloys,” Phys. Rev. B, 83, p. 203201. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic drawings of a stressed GaN nanofilm (a) and a stressed rectangular GaN nanowire with the prestress σ0 in x1 and x2 directions

Grahic Jump Location
Fig. 2

Phonon energy of SH modes (a) and phonon group velocity (b) as the function of the wave vector with the positive and negative stresses; and the phonon density of states as a function of phonon energy with different stress fields (c)

Grahic Jump Location
Fig. 3

Phonon scattering rates of GaN bulk and nanofilm as functions of the phonon frequency for different scattering mechanisms. The prestress is 20 GPa in the stressed nanofilm.

Grahic Jump Location
Fig. 4

The phonon thermal conductivity of confined GaN nanofilms varied with the prestress from −20 GPa to 20 GPa for different geometrical size of the films (a), and the geometrical size of the nanofilms for different prestresses (b)

Grahic Jump Location
Fig. 5

Acoustic phonon dispersion relation of thickness mode for GaN nanowire with various prestress fields. The size of nanowire is 3.19 nm × 6.38 nm. Suppose that the nanowire is subjected to the prestresses of ±20 GPa.

Grahic Jump Location
Fig. 6

The phonon thermal conductivity of confined GaN nanowires varied with the prestress from −20 GPa to 20 GPa with different temperatures (a), and the geometrical size of the wires with different prestresses (b)

Grahic Jump Location
Fig. 7

Comparisons between the predicted phonon thermal conductivity and the ones from MD simulations [33] for free standing GaN nanowires (a) and stressed/strained GaN nanowires (b)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In