Research Papers

Modeling the Optical and Radiative Properties of Vertically Aligned Carbon Nanotubes in the Infrared Region

[+] Author and Article Information
Richard Z. Zhang, Xianglei Liu

George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Zhuomin M. Zhang

George W. Woodruff School of
Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: zhuomin.zhang@me.gatech.edu

1Corresponding author.

Manuscript received March 12, 2014; final manuscript received November 12, 2014; published online May 14, 2015. Assoc. Editor: L. Q. Wang.

J. Heat Transfer 137(9), 091009 (Sep 01, 2015) (9 pages) Paper No: HT-14-1129; doi: 10.1115/1.4030222 History: Received March 12, 2014; Revised November 12, 2014; Online May 14, 2015

During the past decade, research on carbon nanotubes has revealed potential advances in thermal engineering applications. The present study investigates the radiative absorption and reflection of vertically aligned carbon nanotubes (VACNTs) in the broad spectrum from the near-infrared to far-infrared regions. The optical constants of VACNT are modeled based on the dielectric function of graphite and an effective medium approach that treats the CNT film as a homogenized medium. Calculated radiative properties show characteristics of near-unity index matching and high absorptance up to around 20 μm wavelength. The packing density and degree of alignment are shown to affect the predicted radiative properties. The Brewster angle and penetration depth of VACNTs are examined in the infrared spectrum. The radiative properties for VACNT thin films are also evaluated, showing some reduction of absorptance in the near-infrared due to transmission for film thicknesses less than 50 μm. This study provides a better understanding of the infrared behavior of VACNT and may guide the design for its applications in energy harvesting, space-borne detectors, and stealth technology.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Zhang, Z. M., and Ye, H., 2013, “Measurement of Radiative Properties of Engineered Micro-Nanostructures,” Annu. Rev. Heat Transfer, 16(16), pp. 345–396. [CrossRef]
Tarasov, M., Svensson, J., Kuzmin, L., and Campbell, E. E. B., 2007, “Carbon Nanotube Bolometers,” Appl. Phys. Lett., 90(16), p. 163503. [CrossRef]
Itkis, M. E., Borondics, F., Yu, A., and Haddon, R. C., 2006, “Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films,” Science, 312(5772), pp. 413–416. [CrossRef] [PubMed]
Lehman, J., Sanders, A., Hanssen, L., Wilthan, B., Zeng, J., and Jensen, C., 2010, “Very Black Infrared Detector From Vertically Aligned Carbon Nanotubes and Electric-Field Poling of Lithium Tantalate,” Nano Lett., 10(9), pp. 3261–3266. [CrossRef] [PubMed]
Lehman, J. H., Hurst, K. E., Radojevic, A. M., Dillon, A. C., and Osgood, R. M., Jr., 2007, “Multiwall Carbon Nanotube Absorber on a Thin-Film Lithium Niobate Pyroelectric Detector,” Opt. Lett., 32(7), pp. 772–774. [CrossRef] [PubMed]
Lehman, J. H., Engtrakul, C., Gennett, T., and Dillon, A. C., 2005, “Single-Wall Carbon Nanotube Coating on a Pyroelectric Detector,” Appl. Opt., 44(4), pp. 483–488. [CrossRef] [PubMed]
Theocharous, E., Deshpande, R., Dillon, A. C., and Lehman, J., 2006, “Evaluation of a Pyroelectric Detector With a Carbon Multiwalled Nanotube Black Coating in the Infrared,” Appl. Opt., 45(6), pp. 1093–1097. [CrossRef] [PubMed]
Chen, C., Lu, Y., Kong, E. S., Zhang, Y., and Lee, S.-T., 2008, “Nanowelded Carbon-Nanotube-Based Solar Microcells,” Small, 4(9), pp. 1313–1318. [CrossRef] [PubMed]
Lenert, A., Bierman, D. M., Nam, Y., Chan, W. R., Celanovic, I., Soljacic, M., and Wang, E. N., 2014, “A Nanophotonic Solar Thermophotovoltaic Device,” Nat. Nanotechnol., 9(2), pp. 126–130. [CrossRef] [PubMed]
de Heer, W. A., Bacsa, W. S., Châtelain, A., Gerfin, T., Humphrey-Baker, R., Forro, L., and Ugarte, D., 1995, “Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties,” Science, 268(5212), pp. 845–847. [CrossRef] [PubMed]
Yang, Z.-P., Ci, L., Bur, J. A., Lin, S.-Y., and Ajayan, P. M., 2008, “Experimental Observation of an Extremely Dark Material Made by a Low-Density Nanotube Array,” Nano Lett., 8(2), pp. 446–451. [CrossRef] [PubMed]
Yang, Z.-P., Hsieh, M.-L., Bur, J. A., Ci, L., Hanssen, L. M., Wilthan, B., Ajayan, P. M., and Lin, S.-Y., 2011, “Experimental Observation of Extremely Weak Optical Scattering From an Interlocking Carbon Nanotube Array,” Appl. Opt., 50(13), pp. 1850–1855. [CrossRef] [PubMed]
Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D. N., Yumura, M., and Hata, K., 2009, “A Black Body Absorber From Vertically Aligned Single-Walled Carbon Nanotubes,” Proc. Nat. Acad. Sci. USA, 106(15), pp. 6044–6047. [CrossRef]
Wang, X. J., Wang, L. P., Adewuyi, O. S., Cola, B. A., and Zhang, Z. M., 2010, “Highly Specular Carbon Nanotube Absorbers,” Appl. Phys. Lett., 97(16), p. 163116. [CrossRef]
Wang, X. J., Flicker, J. D., Lee, B. J., Ready, W. J., and Zhang, Z. M., 2009, “Visible and Near-Infrared Radiative Properties of Vertically Aligned Multi-Walled Carbon Nanotubes,” Nanotechnology, 20(21), p. 215704. [CrossRef] [PubMed]
Ye, H., Wang, X. J., Lin, W., Wong, C. P., and Zhang, Z. M., 2012, “Infrared Absorption Coefficients of Vertically Aligned Carbon Nanotube Films,” Appl. Phys. Lett., 101(14), p. 141909. [CrossRef]
Ugawa, A., Rinzler, A. G., and Tanner, D. B., 1999, “Far-Infrared Gaps in Single-Wall Carbon Nanotubes,” Phys. Rev. B, 60(16), p. R11305. [CrossRef]
Maine, S., Koechlin, C., Rennesson, S., Jaeck, J., Salort, S., Chassagne, B., Pardo, F., Pelouard, J.-L., and Haïdar, R., 2012, “Complex Optical Index of Single Wall Carbon Nanotube Films From the Near-Infrared to the Terahertz Spectral Range,” Appl. Opt., 51(15), pp. 3031–3035. [CrossRef] [PubMed]
Kampfrath, T., von Volkmann, K., Aguirre, C. M., Desjardins, P., Martel, R., Krenz, M., Frischkorn, C., Wolf, M., and Perfetti, L., 2008, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett., 101(26), p. 267403. [CrossRef] [PubMed]
Nishimura, H., Minami, N., and Shimano, R., 2007, “Dielectric Properties of Single-Walled Carbon Nanotubes in the Terahertz Frequency Range,” Appl. Phys. Lett., 91(1), p. 011108. [CrossRef]
Maeng, I., Kang, C., Oh, S. J., Son, J.-H., An, K. H., and Lee, Y. H., 2007, “Terahertz Electrical and Optical Characteristics of Double-Walled Carbon Nanotubes and Their Comparison With Single-Walled Carbon Nanotubes,” Appl. Phys. Lett., 90(5), p. 051914. [CrossRef]
Kumar, S., Kamaraju, N., Moravsky, A., Loutfy, R. O., Tondusson, M., Freysz, E., and Sood, A. K., 2010, “Terahertz Time Domain Spectroscopy to Detect Low-Frequency Vibrations of Double-Walled Carbon Nanotubes,” Eur. J. Inorg. Chem., 2010(27), pp. 4363–4366. [CrossRef]
Paul, M. J., Kuhta, N. A., Tomaino, J. L., Jameson, A. D., Maizy, L. P., Sharf, T., Rupesinghe, N. L., Teo, K. B. K., Inampudi, S., Podolskiy, V. A., Minot, E. D., and Lee, Y.-S., 2012, “Terahertz Transmission Ellipsometry of Vertically Aligned Multi-Walled Carbon Nanotubes,” Appl. Phys. Lett., 101(11), p. 111107. [CrossRef]
Puretzky, A. A., Geohegan, D. B., Jesse, S., Ivanov, I. N., and Eres, G., 2005, “In situ Measurements and Modeling of Carbon Nanotube Array Growth Kinetics During Chemical Vapor Deposition,” Appl. Phys. A, 81(2), pp. 223–240. [CrossRef]
Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., 2004, “Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy,” Chem. Phys. Lett., 385(3–4), pp. 298–303. [CrossRef]
Kim, D.-H., Jang, H.-S., Kim, C.-D., Cho, D.-S., Yang, H.-S., Kang, H.-D., Min, B.-K., and Lee, H.-R., 2003, “Dynamic Growth Rate Behavior of a Carbon Nanotube Forest Characterized by In Situ Optical Growth Monitoring,” Nano Lett., 3(6), pp. 863–865. [CrossRef]
Baker, R. T. K., 1989, “Catalytic Growth of Carbon Filaments,” Carbon, 27(3), pp. 315–323. [CrossRef]
Saito, R., Grüneis, A., Samsonidze, G. G., Dresselhaus, G., Dresselhaus, M. S., Jorio, A., Cançado, L. G., Pimenta, M. A., and Souza Filho, A. G., 2004, “Optical Absorption of Graphite and Single-Wall Carbon Nanotubes,” Appl. Phys. A, 78(8), pp. 1099–1105. [CrossRef]
Jäger, C., Henning, T., Schlögl, R., and Spillecke, O., 1999, “Spectral Properties of Carbon Black,” J. Non-Cryst. Solids, 258(1–3), pp. 161–179. [CrossRef]
Kuzmenko, A. B., van Heumen, E., Carbone, F., and van der Marel, D., 2008, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett., 100(11), p. 117401. [CrossRef] [PubMed]
Sato, Y., 1968, “Optical Study of Electronic Structure of Graphite,” J. Phys. Soc. Jpn., 24(3), pp. 489–492. [CrossRef]
Philipp, H. R., 1977, “Infrared Optical Properties of Graphite,” Phys. Rev. B, 16(6), pp. 2896–2900. [CrossRef]
Itkis, M. E., Niyogi, S., Meng, M. E., Hamon, M. A., Hu, H., and Haddon, R. C., 2002, “Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes,” Nano Lett., 2(2), pp. 155–159. [CrossRef]
Venghaus, H., 1977, “Infrared Reflectance and Dielectric Properties of Pyrolytic Graphite for E || c Polarization,” Phys. Status Solidi B, 81(1), pp. 221–225. [CrossRef]
Nemanich, R. J., Lucovsky, G., and Solin, S. A., 1977, “Infrared Active Optical Vibrations of Graphite,” Solid State Commun., 23(2), pp. 117–120. [CrossRef]
Borghesi, A., and Guizzetti, G., 1991, “Graphite (C),” Handbook of Optical Constants of Solids II, E. D.Palik, ed., Academic Press, San Diego, CA, pp. 449–460.
Draine, B. T., and Lee, H. M., 1984, “Optical-Properties of Interstellar Graphite and Silicate Grains,” Astrophys. J., 285(1), pp. 89–108. [CrossRef]
Smith, D. Y., 1985, “Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data,” Handbook of Optical Constants of Solids, E. D. Palik, ed., Academic Press, San Diego, CA, pp. 35–68. [CrossRef]
Taft, E. A., and Philipp, H. R., 1965, “Optical Properties of Graphite,” Phys. Rev., 138(1A), pp. A197–A202. [CrossRef]
Zhang, Z. M., 2007, Nano/Microscale Heat Transfer, McGraw-Hill, New York.
García-Vidal, F. J., Pitarke, J. M., and Pendry, J. B., 1997, “Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes,” Phys. Rev. Lett., 78(22), pp. 4289–4292. [CrossRef]
Lü, W., Dong, J., and Li, Z.-Y., 2000, “Optical Properties of Aligned Carbon Nanotube Systems Studied by the Effective-Medium Approximation Method,” Phys. Rev. B, 63(3), p. 033401. [CrossRef]
Wu, X. H., Pan, L. S., Fan, X. J., Xu, D., Hua, L., and Zhang, C. X., 2003, “A Semi-Analytic Method for Studying Optical Properties of Aligned Carbon Nanotubes,” Nanotechnology, 14(11), pp. 1180–1186. [CrossRef]
de los Arcos, T., Garnier, M. G., Oelhafen, P., Seo, J. W., Domingo, C., García-Ramos, J. V., and Sánchez-Cortés, S., 2005, “In Situ Assessment of Carbon Nanotube Diameter Distribution With Photoelectron Spectroscopy,” Phys. Rev. B, 71(20), p. 205416. [CrossRef]
Bao, H., Ruan, X., and Fisher, T. S., 2010, “Optical Properties of Ordered Vertical Arrays of Multi-Walled Carbon Nanotubes From FDTD Simulations,” Opt. Express, 18(6), pp. 6347–6359. [CrossRef] [PubMed]
Liu, X. L., Zhang, R. Z., and Zhang, Z. M., 2013, “Near-Field Thermal Radiation Between Hyperbolic Metamaterials: Graphite and Carbon Nanotubes,” Appl. Phys. Lett., 103(21), p. 213102. [CrossRef]
Knoesen, A., Moharam, M., and Gaylord, T., 1985, “Electromagnetic Propagation at Interfaces and in Waveguides in Uniaxial Crystals,” Appl. Phys. B, 38(3), pp. 171–178. [CrossRef]
Wang, H., Liu, X., Wang, L., and Zhang, Z., 2013, “Anisotropic Optical Properties of Silicon Nanowire Arrays Based on the Effective Medium Approximation,” Int. J. Therm. Sci., 65, pp. 62–69. [CrossRef]
Liu, X. L., Wang, L. P., and Zhang, Z. M., 2013, “Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays,” ASME J. Heat Transfer, 135(6), p. 061602. [CrossRef]
Born, M., and Wolf, E., 1999, Principles or Optics, 7th ed., Cambridge University Press, Cambridge, UK. [CrossRef]
Edwards, D. F., 1985, “Silicon (Si),” Handbook of Optical Constants of Solids, E. D. Palik, ed., Academic Press, San Diego, pp. 547–569. [CrossRef]


Grahic Jump Location
Fig. 1

Optical constants (n and κ) of graphite: (a) electric field perpendicular to the optical axis and (b) electric field parallel to the optical axis

Grahic Jump Location
Fig. 2

(a) Illustration of a VACNT film of thickness H grown on a silicon substrate, where the inset shows a unit cell of width a containing a multiwalled CNT of diameter d for a periodic array; (b) perfectly aligned CNTs with an alignment factor x = 1.0; and (c) imperfectly aligned CNTs where x < 1. Typical VACNT coatings have alignment factor ranging from x = 0.95 to x = 0.99.

Grahic Jump Location
Fig. 3

Effective optical constants of VACNT films with varying filling ratios f and alignment factors x: (a) and (b) refractive index for ordinary and extraordinary waves, respectively and (c) and (d) extinction coefficient for ordinary and extraordinary waves, respectively

Grahic Jump Location
Fig. 4

Normal reflectance spectra of a semi-infinite VACNT films with varying filling ratios and alignment factors. The incidence angle upon the VACNT film is illustrated in the inset.

Grahic Jump Location
Fig. 5

Contours of the reflectance versus wavelength and incidence angle for: (a) s-polarization and (b) p-polarization. The VACNT film is assumed to be semi-infinite with filling ratio f = 0.05 and alignment factor x = 0.98.

Grahic Jump Location
Fig. 6

(a) Correlation of the Brewster angle θB and the principal angle θP with the wavelength. The abscissa and ordinate are interchanged in order to compare the traces with Fig. 5(b). (b) The reflectance as a function of the incidence angle for both polarizations at four distinct wavelengths.

Grahic Jump Location
Fig. 7

Hemispherical absorptance spectra for s- and p-polarization, and the average of the two

Grahic Jump Location
Fig. 8

Radiation penetration depths for: (a) s-polarization and (b) p-polarization at incidence angles θi = 0 deg, 30 deg, and 60 deg, with f = 0.05 and x = 0.98

Grahic Jump Location
Fig. 9

Absorptance of VACNT film of different thicknesses with f = 0.05 and x = 0.98, at incidence angles of θi = 0 deg, 30 deg, and 60 deg: (a) s-polarization, H = 10 μm; (b) p-polarization, H = 10 μm; (c) s-polarization, H = 25 μm; (d) p-polarization, H = 25 μm; (e) s-polarization, H = 50 μm; and (f) p-polarization, H = 50 μm



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In