Tandon, T. N.
,
Varma, H. K.
, and
Gupta, C. P.
, 1985, “A Void Fraction Model for Annular Two-Phase Flow,” Int. J. Heat Mass Transfer, 28(1), pp. 191–198.

[CrossRef]
Wallis, G. B.
, 1969, One-Dimensional Two-Phase Flow, McGraw-Hill, New York.

Wojtan, L.
,
Ursenbacher, T.
, and
Thome, J. R.
, 2004, “Interfacial Measurements in Stratified Types of Flow. Part II: Measurements for R-22 and R-410A,” Int. J. Multiphase Flow, 30(2), pp. 125–137.

[CrossRef]
Lockhart, R. W.
, and
Martinelli, R. C.
, 1949, “Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes,” Chem. Eng. Prog., 45(1), pp. 39–48.

Rice, C. K.
, 1987, “Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory Predictions,” ASHRAE Trans., 93(3035), pp. 341–367.

Diener, R.
, and
Friedel, L.
, 1998, “Reproductive Accuracy of Selected Void Fraction Correlations for Horizontal and Vertical Upflow,” Forsch. Ingenieurwes., 64(4–5), pp. 87–97.

[CrossRef]
Xu, Y.
, and
Fang, X.
, 2014, “Correlations of Void Fraction for Two-Phase Refrigerant Flow in Pipes,” Appl. Therm. Eng., 64(1–2), pp. 242–251.

[CrossRef]
Woldesemayat, M. A.
, and
Ghajar, A. J.
, 2007, “Comparison of Void Fraction Correlations for Different Flow Patterns in Horizontal and Upward Inclined Pipes,” Int. J. Multiphase Flow, 33(4), pp. 347–370.

[CrossRef]
Wedekind, G. L.
, and
Stoecker, W. F.
, 1968, “Theoretical Model for Predicting the Transient Response of the Mixture-Vapor Transition Point in Horizontal Evaporating Flow,” ASME J. Heat Transfer, 90(1), pp. 165–174.

[CrossRef]
Wedekind, G. L.
,
Bhatt, B. L.
, and
Beck, B. T.
, 1978, “A System Mean Void Fraction Model for Predicting Various Transient Phenomena Associated With Two-Phase Evaporating and Condensing Flows,” Int. J. Multiphase Flow, 4(1), pp. 97–114.

[CrossRef]
Llopis, R.
,
Cabello, R.
, and
Torrella, E.
, 2008, “A Dynamic Model of a Shell-and-Tube Condenser Operating in a Vapour Compression Refrigeration Plant,” Int. J. Therm. Sci., 47(7), pp. 926–934.

[CrossRef]
Ribatski, G.
, and
Thome, J. R.
, 2005, “Dynamics of Two-Phase Flow Across Horizontal Tube Bundles—A Review,” Rev. Eng. Térm., 4(2), pp. 122–131.

Bamardouf, K.
, and
McNeil, D. A.
, 2009, “Experimental and Numerical Investigation of Two-Phase Pressure Drop in Vertical Cross-Flow Over a Horizontal Tube Bundle,” Appl. Therm. Eng., 29(7), pp. 1356–1365.

[CrossRef]
Milián, V.
,
Navarro-Esbrí, J.
,
Ginestar, D.
,
Molés, F.
, and
Peris, B.
, 2013, “Dynamic Model of a Shell-and-Tube Condenser. Analysis of the Mean Void Fraction Correlation Influence on the Model Performance,” Energy, 59, pp. 521–533.

[CrossRef]
Ghajar, A. J.
, and
Bhagwat, S. M.
, 2013, “Effect of Void Fraction and Two-Phase Dynamic Viscosity Models on Prediction of Hydrostatic and Frictional Pressure Drop in Vertical Upward Gas–Liquid Two-Phase Flow,” Heat Transfer Eng., 34(13), pp. 1044–1059.

[CrossRef]
Zivi, S. M.
, 1964, “Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production,” ASME J. Heat Transfer, 86(2), pp. 247–252.

[CrossRef]
Thom, J. R. S.
, 1964, “Prediction of Pressure Drop During Forced Circulation Boiling of Water,” Int. J. Heat Mass Transfer, 7(7), pp. 709–724.

[CrossRef]
Smith, S. L.
, 1969, “Void Fractions in Two-Phase Flow: A Correlation Based Upon an Equal Velocity Head Model,” Proc. Inst. Mech. Eng., 184(1), pp. 647–664.

[CrossRef]
Farzad, M.
, and
O'Neal, D. L.
, 1994, “The Effect of Void Fraction Model on Estimation of Air Conditioner System Performance Variables Under a Range of Refrigerant Charging Conditions,” Int. J. Refrig., 17(2), pp. 85–93.

[CrossRef]
Hughmark, G. A.
, 1965, “Holdup and Heat Transfer in Horizontal Slug Gas-Liquid Flow,” Chem. Eng. Sci., 20(12), pp. 1007–1010.

[CrossRef]
Ghajar, A. J.
, and
Tang, C. C.
, 2012, “Void Fraction and Flow Patterns of Two-Phase Flow in Upward and Downward Vertical and Horizontal Pipes,” Advances in Multiphase Flow and Heat Transfer, Bentham-e-Books, UAE, pp. 175–201.

Bhagwat, S. M.
, and
Ghajar, A. J.
, 2012, “Similarities and Differences in the Flow Patterns and Void Fraction in Vertical Upward and Downward Two Phase Flow,” Exp. Therm. Fluid Sci., 39, pp. 213–227.

[CrossRef]
MacArthur, J. W.
, and
Grald, E. W.
, 1989, “Unsteady Compressible Two-Phase Flow Model for Predicting Cyclic Heat Pump Performance and a Comparison With Experimental Data,” Int. J. Refrig., 12(1), pp. 29–41.

[CrossRef]
Rasmussen, B. P.
, 2005, “Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.

Jensen, J. M.
, and
Tummescheit, H.
, 2002, “Moving Boundary Models for Dynamic Simulations of Two-Phase Flows,” 2nd International Modelica Conference, Oberpfaffenhofen, Germany, pp. 235–244.

Jensen, J. M.
, 2003, “Dynamic Modeling of Thermo-Fluid Systems-With Focus on Evaporators for Refrigeration,” Ph.D. thesis, Technical University of Denmark, Kongens Lyngby, Denmark.

Eldredge, B. D.
,
Rasmussen, B. P.
, and
Alleyne, A. G.
, 2008, “Moving-Boundary Heat Exchanger Models With Variable Outlet Phase,” ASME J. Dyn. Syst., Meas., Control, 130(6), p. 061003.

[CrossRef]
Li, B.
, and
Alleyne, A. G.
, 2010, “A Dynamic Model of a Vapor Compression Cycle With Shut-Down and Start-Up Operations,” Int. J. Refrig., 33(3), pp. 538–552.

[CrossRef]
McKinley, T. L.
, and
Alleyne, A. G.
, 2008, “An Advanced Nonlinear Switched Heat Exchanger Model for Vapor Compression Cycles Using the Moving-Boundary Method,” Int. J. Refrig., 31(7), pp. 1253–1264.

[CrossRef]
Li, B.
,
Jain, N.
,
Mohs, W. F.
,
Munns, S.
,
Patnaik, V.
,
Berge, J.
, and
Alleyne, A. G.
, 2012, “Dynamic Modeling of Refrigerated Transport Systems With Cooling-Mode/Heating-Mode Switch Operations,” HVAC&R Res., 18(5), pp. 974–996.

Bendapudi, S.
,
Braun, J. E.
, and
Groll, E. A.
, 2008, “A Comparison of Moving-Boundary and Finite-Volume Formulations for Transients in Centrifugal Chillers,” Int. J. Refrig., 31(8), pp. 1437–1452.

[CrossRef]
He, X. D.
,
Liu, S.
,
Asada, H. H.
, and
Itoh, H.
, 1998, “Multivariable Control of Vapor Compression Systems,” HVAC&R Res., 4(3), pp. 205–230.

[CrossRef]
Zhang, W. J.
, and
Zhang, C. L.
, 2006, “A Generalized Moving-Boundary Model for Transient Simulation of Dry-Expansion Evaporators Under Larger Disturbances,” Int. J. Refrig., 29(7), pp. 1119–1127.

[CrossRef]
Chisholm, D.
, 1983, Two-Phase Flow in Pipelines and Heat Exchangers, Georg Godwin, London.

Kim, S. M.
, and
Mudawar, I.
, 2013, “Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part II. Two-Phase Heat Transfer Coefficient,” Int. J. Heat Mass Transfer, 64, pp. 1239–1256.

[CrossRef]
Dittus, F. W.
, and
Boelter, L. M. K.
, 1985, “Heat Transfer in Automobile Radiators of the Tubular Type,” Int. Commun. Heat Mass Transfer, 12(1), pp. 3–22.

[CrossRef]
Shah, M. M.
, 1979, “A General Correlation for Heat Transfer During Film Condensation Inside Pipes,” Int. J. Heat Mass Transfer, 22(4), pp. 547–556.

[CrossRef]
Klimenko, V. V.
, 1990, “A Generalized Correlation for Two-Phase Forced Flow Heat Transfer—Second Assessment,” Int. J. Heat Mass Transfer, 33(10), pp. 2073–2088.

[CrossRef]
Raman, A. A.
, 1995, “Modeling of Condensers, Evaporators and Refrigeration Circuit in Automobile Air Conditioning Systems,” Ph.D. thesis, University of Valladolid, Valladolid, Spain (in Spanish).

Kays, W. M.
, and
London, A. L.
, 1998, Compact Heat Exchangers, McGraw-Hill, New York.

Datta, S. P.
,
Das, P. K.
, and
Mukhopadhyay, S.
, 2013, “Performance of an Off-Board Test Rig for an Automotive Air Conditioning System,” Int. J. Air-Cond. Refrig., 21(3), p. 1350020.

[CrossRef]
REFPROP 9.1, 2010, “Reference Fluid Thermodynamic and Transport Properties,” National Institute of Standards and Technology (NIST), Gaitherburg, MD.