Research Papers: Micro/Nanoscale Heat Transfer

Heat Transfer Across Nanoparticle–Liquid Interfaces

[+] Author and Article Information
Anjan R. Nair

Assistant Professor
Department of Mechanical Engineering,
College of Engineering Trivandrum,
Kerala 695016, India

Sarith P. Sathian

Associate Professor
Department of Applied Mechanics,
IIT Madras,
Chennai 600036, India
e-mail: sarith@iitm.ac.in

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 11, 2015; final manuscript received June 1, 2016; published online July 19, 2016. Assoc. Editor: Alan McGaughey.

J. Heat Transfer 138(11), 112402 (Jul 19, 2016) (6 pages) Paper No: HT-15-1112; doi: 10.1115/1.4033954 History: Received February 11, 2015; Revised June 01, 2016

A better understanding of submicron-scale heat transfer is rapidly gaining interest due to the complex phenomena involved in nanometer scales. We discuss the role of interfacial resistance, in particular that of curvature effects, and the possibility of achieving high temperatures inside the particles without creating a phase transition in the surrounding fluid. The heat transfer from a heated nanoparticle into surrounding fluid is studied using molecular dynamics (MD) simulations. The results show that the particle size and wetting strength between the nanoparticle–liquid influence the heat transfer characteristics. The interfacial conductance and Kapitza length for a model solid–liquid interface were calculated. Both quantities are found to be strongly dependent on particle size and temperature. Smaller nanoparticles are observed to have a stronger bonding with the interfacial fluid when the temperature of the particle is higher, while larger nanoparticles have better affinity with the liquid at lower temperatures.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Choi, S. U. S , 1995, “ Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of Non-Newtonian Flows, edited by D. A. Siginer and H. P. Wang, presented at the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov.12–17, 231, pp. 99–105.
Eastman, J. , Phillpot, S. , Choi, S. , and Keblinski, P. , 2004, “ Thermal Transport in Nanofluids 1,” Ann. Rev. Mater. Res., 34(1), pp. 219–246. [CrossRef]
Keblinski, P. , Prasher, R. , and Eapen, J. , 2008, “ Thermal Conductance of Nanofluids: Is the Controversy Over?,” J. Nanopart. Res., 10(7), pp. 1089–1097. [CrossRef]
Hu, M. , Petrova, H. , and Hartland, G. V. , 2004, “ Investigation of the Properties of Gold Nanoparticles in Aqueous Solution at Extremely High Lattice Temperatures,” Chem. Phys. Lett., 391(4–6), pp. 220–225. [CrossRef]
Sasikumar, K. , and Keblinski, P. , 2014, “ Molecular Dynamics Investigation of Nanoscale Cavitation Dynamics,” J. Chem. Phys., 141(23), p. 234508. [CrossRef] [PubMed]
Lombard, J. , Biben, T. , and Merabia, S. , 2014, “ Kinetics of Nanobubble Generation Around Overheated Nanoparticles,” Phys. Rev. Lett., 112(10), p. 105701. [CrossRef] [PubMed]
Merabia, S. , Shenogin, S. , Joly, L. , Keblinski, P. , and Barrat, J.-L. , 2009, “ Heat Transfer From Nanoparticles: A Corresponding State Analysis,” Proc. Natl. Acad. Sci., 106(36), pp. 15113–15118. [CrossRef]
Merabia, S. , Keblinski, P. , Joly, L. , Lewis, L. J. , and Barrat, J.-L. , 2009, “ Critical Heat Flux Around Strongly Heated Nanoparticles,” Phys. Rev. E, 79(2), p. 021404. [CrossRef]
Shenogina, N. , Godawat, R. , Keblinski, P. , and Garde, S. , 2009, “ How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces,” Phys. Rev. Lett., 102(15), p. 156101. [CrossRef] [PubMed]
Acharya, H. , Mozdzierz, N. J. , Keblinski, P. , and Garde, S. , 2012, “ How Chemistry, Nanoscale Roughness and the Direction of Heat Flow Affect Thermal Conductance of Solid Water Interfaces,” Ind. Eng. Chem. Res., 51(4), pp. 1767–1773. [CrossRef]
Harikrishna, H. , Ducker, W. A. , and Huxtable, S. T. , 2013, “ The Influence of Interface Bonding on Thermal Transport Through Solid Liquid Interfaces,” Appl. Phys. Lett., 102(25), p. 251606. [CrossRef]
Tian, Z. , Marconnet, A. , and Chen, G. , 2015, “ Enhancing Solid-Liquid Interface Thermal Transport Using Self-Assembled Monolayers,” Appl. Phys. Lett., 106(21), p. 211602. [CrossRef]
Stillinger, F. H. , 1973, “ Structure in Aqueous Solutions of Nonpolar Solutes From the Standpoint of Scaled-Particle Theory,” J. Solution Chem., 2(2–3), pp. 141–158. [CrossRef]
Pollack, G. L. , 1969, “ Kapitza Resistance,” Rev. Mod. Phys., 41(1),pp. 48–81. [CrossRef]
van den Brink, A. M. , and Dekker, H. , 1996, “ Local Temperature Measurement and Kapitza Boundary Resistance,” Phys. B, 219–220, pp. 656–659. [CrossRef]
Swartz, E. T. , and Pohl, R. O. , 1989, “ Thermal Boundary Resistance,” Rev. Mod. Phys., 61(3), pp. 605–668. [CrossRef]
Kazan, M. , 2011, “ Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice,” ASME J. Heat Transfer, 133(11), p. 112401. [CrossRef]
Merabia, S. , and Termentzidis, K. , 2012, “ Thermal Conductance at the Interface Between Crystals Using Equilibrium and Nonequilibrium Molecular Dynamics,” Phys. Rev. B, 86(9), p. 094303. [CrossRef]
Caroli, C. , Combescot, R. , Nozieres, P. , and Saint-James, D. , 1971, “ Direct Calculation of the Tunneling Current,” J. Phys. C, 4(8), pp. 916–929. [CrossRef]
Cahill, D. G. , Ford, W. K. , Goodson, K. E. , Mahan, G. D. , Majumdar, A. , Maris, H. J. , Merlin, R. , and Phillpot, S. R. , 2003, “ Nanoscale Thermal Transport,” J. Appl. Phys., 93(2), pp. 793–818. [CrossRef]
Chen, G. , 1996, “ Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,” ASME J. Heat Transfer, 118(3), pp. 539–545. [CrossRef]
Plimpton, S. , 1995, “ Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Shi, B. , and Dhir, V. K. , 2009, “ Molecular Dynamics Simulation of the Contact Angle of Liquids on Solid Surfaces,” J. Chem. Phys., 130(3), p. 0347051. [CrossRef]
Semiromi, D. T. , and Azimian, A. R. , 2010, “ Molecular Dynamics Simulation of Nonodroplets With the Modified Lennard-Jones Potential Function,” Heat Mass Transfer, 47(5), pp. 579–588. [CrossRef]
Maruyama, S. , Kurashige, T. , Matsumoto, S. , Yamaguchi, Y. , and Kimura, T. , 1998, “ Liquid Droplet in Contact With a Solid Surface,” Microscale Thermophys. Eng., 2(1), pp. 49–62. [CrossRef]
Nair, A. R. , and Sathian, S. P. , 2012, “ A Molecular Dynamics Study to Determine the Solid-Liquid Interfacial Tension Using Test Area Simulation Method (TASM),” J. Chem. Phys., 137(8), p. 084702. [CrossRef] [PubMed]
Barrat, J. L. , and Chiaruttini, F. , 2003, “ Kapitza Resistance at the Liquid-Solid Interface,” Mol. Phys., 101(11), pp. 1605–1610. [CrossRef]
Allen, M. P. , and Tildesley, S. J. , 1991, Computer Simulation of Liquids, Reprint ed., Oxford University Press, New York.
Gloor, G. J. , Jackson, G. , Blas, F. J. , and de Miguel, E. , 2005, “ Test-Area Simulation Method for the Direct Determination of the Interfacial Tension of Systems With Continuous or Discontinuous Potentials,” J. Chem. Phys., 123(13), p. 134703. [CrossRef] [PubMed]
Ge, Z. , Cahill, D. G. , and Braun, P. V. , 2004, “ AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution,” J. Phys. Chem. B, 108(49), pp. 18870–18875. [CrossRef]
Ge, Z. , Cahill, D. G. , and Braun, P. V. , 2006, “ Thermal Conductance of Hydrophilic and Hydrophobic Interfaces,” Phys. Rev. Lett., 96(18), p. 186101. [CrossRef] [PubMed]
Issa, K. M. , and Mohamad, A. A. , 2012, “ Lowering Liquid-Solid Interfacial Thermal Resistance With Nanopatterned Surfaces,” Phys. Rev. E, 85(8), p. 031602. [CrossRef]
Ong, W.-L. , Majumdar, S. , Malen, J. A. , and McGaughey, A. J. H. , 2014, “ Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays,” J. Phys. Chem. C, 118(14), pp. 7288–7295. [CrossRef]
Barisik, M. , and Beskok, A. , 2014, “ Temperature Dependence of Thermal Resistance at the Water/Silicon Interface,” Int. J. Therm. Sci., 77, pp. 47–54. [CrossRef]


Grahic Jump Location
Fig. 1

Nanoparticle–fluid system

Grahic Jump Location
Fig. 2

Temperature profiles across the nanoparticle interface–particle size

Grahic Jump Location
Fig. 3

Interfacial conductance as a function of particle size and temperature

Grahic Jump Location
Fig. 4

Interfacial conductance as a function of solid–liquid interfacial tension

Grahic Jump Location
Fig. 5

Variation of solid–liquid interfacial tension with particle size

Grahic Jump Location
Fig. 6

Kapitza length as a function of particle size (lK is in molecular dimension)

Grahic Jump Location
Fig. 7

Temperature field across the liquid–nanoparticle interface, obtained with MD

Grahic Jump Location
Fig. 8

Steady-state density profiles for nanoparticle–liquid model system for three interaction strengths (c = 0.5, 1, and 1.5)

Grahic Jump Location
Fig. 9

Nanoparticle–fluid interface for c = 0.5



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In