Research Papers: Porous Media

Effects of Physical and Sorption Properties of Desiccant Coating on Performance of Energy Wheels

[+] Author and Article Information
Farhad Fathieh

Department of Mechanical Engineering,
University of Saskatchewan,
57 Campus Drive,
Saskatoon, SK S7N 5A9, Canada
e-mail: Farhad.Fathieh@usask.ca

Majid Nezakat

Department of Mechanical Engineering,
University of Saskatchewan,
57 Campus Drive,
Saskatoon, SK S7N 5A9, Canada
e-mail: Majid.Nezakat@usask.ca

Richard W. Evitts

Department of Chemical and
Biological Engineering,
University of Saskatchewan,
57 Campus Drive,
Saskatoon, SK S7N 5A9, Canada
e-mail: Richard.Evitts@usask.ca

Carey J. Simonson

Department of Mechanical Engineering,
University of Saskatchewan,
57 Campus Drive,
Saskatoon, SK S7N 5A9, Canada
e-mail: Carey.Simonson@usask.ca

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 24, 2016; final manuscript received December 15, 2016; published online February 28, 2017. Assoc. Editor: Ali Khounsary.

J. Heat Transfer 139(6), 062601 (Feb 28, 2017) (14 pages) Paper No: HT-16-1227; doi: 10.1115/1.4035650 History: Received April 24, 2016; Revised December 15, 2016

Desiccant-coated energy wheels are rotary-air-to-air energy exchangers widely used in ventilation systems to reduce the energy consumption required in industrial environments and commercial buildings. In this study, the effects of silica gel microphysical properties, i.e., pore width (Pw), specific surface area (SA), and particle size (dp), on the moisture recovery efficiency (latent effectiveness) of energy wheels are investigated. Three silica gel samples with different particle size and pore width (55 μm–77 Å, 150 μm–63 Å, and 160 μm–115 Å) are selected to coat small-scale energy exchangers. The sorption performance of the exchangers is determined from their normalized humidity response to a step increase in the inlet humidity at different flow rates. The results demonstrate that the transient humidity response is mainly specified by the desiccant pore size distribution, specific surface area, and mass of the coating. The transient analytical model is used to calculate the latent effectiveness (ɛL) of the exchangers from the transient humidity response. It was found that the exchanger coated with the smallest pore width (63 Å) has the highest available surface area and the highest latent effectiveness. With almost the same particle size (dp = 150 μm and 160 μm), the latent effectiveness increases by 5% (at wheel speed 20 rpm and Re = 174) as the pore width reduces from 150 Å to 63 Å. Increasing the particle size from 55 μm to 150 μm with almost the identical pore width (Pw = 63 Å and 77 Å) results in a slight enhancement in the latent effectiveness. ɛL is also calculated for correlated data (Yoon–Nelson model) where the results agree within experimental uncertainty bounds.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


ASHRAE, 2008, ASHRAE, HVAC Systems and Equipments, ASHRAE, Atlanta, GA.
Abe, O. , Simonson, C. J. , Besant, R. W. , and Shang, W. , 2006, “ Effectiveness of Energy Wheels From Transient Measurements—Part I: Prediction of Effectiveness and Uncertainty,” Int. J. Heat Mass Transfer, 49(1–2), pp. 52–62. [CrossRef]
Abe, O. O. , Simonson, C. J. , and Besant, R. W. , 2006, “ Relationship Between Energy Wheel Speed and Effectiveness and Its Transient Response—Part II: Mathematical Development of the Characteristic Time Constants and Their Relationship With Effectiveness,” ASHRAE Trans., 112(2), pp. 89–102.
ANSI/ASHRAE, 2013, “ Method of Testing Air-to-Air Heat/Energy Exchangers,” Vol. 8400, ASHRAE, Atlanta, GA, ANSI/ASHRAE Standard No. 84-2013.
Fathieh, F. , Besant, R. W. , Evitts, R. W. , and Simonson, C. J. , 2016, “ Effects of Heat Loss/Gain on the Transient Testing of Heat Wheels,” ASME J. Therm. Sci. Eng. Appl., 8(3), p. 031003. [CrossRef]
Fathieh, F. , Rafati Nasr, M. , Sadeh, S. , Besant, R. W. , Evitts, R. W. , Müller, J. , and Simonson, C. J. , 2016, “ Determination of Latent Effectiveness in Regenerators Using Humidity Step Test Data,” Int. J. Heat Mass Transfer, 103, pp. 501–515. [CrossRef]
Furukawa, H. , Gándara, F. , Zhang, Y.-B. , Jiang, J. , Queen, W. L. , Hudson, M. R. , and Yaghi, O. M. , 2014, “ Water Adsorption in Porous Metal–Organic Frameworks and Related Materials,” J. Am. Chem. Soc., 136(11), pp. 4369–4381. [CrossRef] [PubMed]
Dehabadi, L. , and Wilson, L. D. , 2015, “ An NMR Investigation of the Fractionation of Water-Ethanol Mixtures With Cellulose and Its Cross-Linked Biopolymer Forms,” Energy Fuels, 30(7), pp. 5684–5692. [CrossRef]
Nawaz, K. , Schmidt, S. J. , and Jacobi, A. M. , 2014, “ Effect of Catalyst Used in the Sol–Gel Process on the Microstructure and Adsorption/Desorption Performance of Silica Aerogels,” Int. J. Heat Mass Transfer, 74, pp. 25–34. [CrossRef]
Golubovic, M. N. , Hettiarachchi, H. D. M. D. M. , and Worek, W. M. , 2006, “ Sorption Properties for Different Types of Molecular Sieve and Their Influence on Optimum Dehumidification Performance of Desiccant Wheels,” Int. J. Heat Mass Transfer, 49(17–18), pp. 2802–2809. [CrossRef]
Zheng, X. , Ge, T. S. , and Wang, R. Z. , 2014, “ Recent Progress on Desiccant Materials for Solid Desiccant Cooling Systems,” Energy, 74, pp. 280–294. [CrossRef]
Arenas, L. T. , Simm, C. W. , Gushikem, Y. , Dias, S. L. P. , Moro, C. C. , Costa, T. M. H. , and Benvenutti, E. V. , 2007, “ Synthesis of Silica Xerogels With High Surface Area Using Acetic Acid as Catalyst,” J. Braz. Chem. Soc., 18(5), pp. 886–890. [CrossRef]
Vijayalakshmi, U. , Balamurugan, A. , and Rajeswari, S. , 2005, “ Synthesis and Characterization of Porous Silica Gels for Biomedical Applications,” Trends Biomater. Artif. Organs, 18(2), pp. 101–105.
Yano, K. , and Fukushima, Y. , 2003, “ Particle Size Control of Mono-Dispersed Super-Microporous Silica Spheres,” J. Mater. Chem., 13(10), pp. 2577–2581. [CrossRef]
Wu, L. Y. L. , Nemeth, S. , Blanchet, T. A. , Peng, Y.-L. , Briscoe, B. J. , Ni, Z. , Gadow, R. , Scherer, D. , Khedkar, J. , Negulescu, I. , Meletis, E. I. , Briscoe, B. J. , Evans, P. D. , Pellilo, E. , and Sinha, S. K. , 2003, “ Non-Stick and Scratch Resistant Sol-Gel Coating for Aluminum,” MRS Proc., 778(2), p. U8.7/W7.7.
Sphaier, L. A. , and Worek, W. M. , 2010, “ Influence of Adsorbent Properties on Enthalpy Wheel Performance,” ASME Paper No. IHTC14-22401.
Wang, W. , Wu, L. , Li, Z. , Fang, Y. , Ding, J. , and Xiao, J. , 2013, “ An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification,” Dry. Technol., 31(12), pp. 1334–1345. [CrossRef]
Naghash, M. , Fathieh, F. , Besant, R. W. , Evitts, R. W. , and Simonson, C. J. , 2016, “ Measurement of Convective Heat Transfer Coefficients in a Randomly Packed Bed of Silica Gel Particles Using IHTP Analysis,” Appl. Therm. Eng., 106, pp. 361–370. [CrossRef]
Nóbrega, C. E. L. , and Brum, N. C. L. , 2009, “ Modeling and Simulation of Heat and Enthalpy Recovery Wheels,” Energy, 34(12), pp. 2063–2068. [CrossRef]
Simonson, C. J. , and Besant, R. W. , 1998, “ Heat and Moisture Transfer in Energy Wheels During Sorption, Condensation, and Frosting Conditions,” ASME J. Heat Transfer, 120(3), pp. 699–708. [CrossRef]
Zhang, L. Z. , and Niu, J. L. , 2002, “ Performance Comparisons of Desiccant Wheels for Air Dehumidification and Enthalpy Recovery,” Appl. Therm. Eng., 22(12), pp. 1347–1367. [CrossRef]
Zhang, X. J. , Dai, Y. J. , and Wang, R. Z. , 2003, “ A Simulation Study of Heat and Mass Transfer in a Honeycombed Rotary Desiccant Dehumidifier,” Appl. Therm. Eng., 23(8), pp. 989–1003. [CrossRef]
Nia, F. E. , van Paassen, D. , and Saidi, M. H. , 2006, “ Modeling and Simulation of Desiccant Wheel for Air Conditioning,” Energy Build., 38(10), pp. 1230–1239. [CrossRef]
Wu, Z. , Melnik, R. V. N. N. , and Borup, F. , 2006, “ Model-Based Analysis and Simulation of Regenerative Heat Wheel,” Energy Build., 38(5), pp. 502–514. [CrossRef]
Sphaier, L. A. , and Worek, W. M. , 2004, “ Analysis of Heat and Mass Transfer in Porous Sorbents Used in Rotary Regenerators,” Int. J. Heat Mass Transfer, 47(14–16), pp. 3415–3430. [CrossRef]
Simonson, C. J. , and Besant, R. W. , 1999, “ Energy Wheel Effectiveness—Part II: Correlations,” Int. J. Heat Mass Transfer, 42(12), pp. 2171–2185. [CrossRef]
Gorbach, A. , Stegmaier, M. , and Eigenberger, G. , 2004, “ Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics,” Adsorption, 10(1), pp. 29–46. [CrossRef]
Harding, A. W. , Foley, N. J. , Norman, P. R. , Francis, D. C. , and Thomas, K. M. , 1998, “ Diffusion Barriers in the Kinetics of Water Vapor Adsorption/Desorption on Activated Carbons,” Langmuir, 14(14), pp. 3858–3864. [CrossRef]
Satoh, S. , Matsuyama, I. , and Susa, K. , 1995, “ Diffusion of Gases in Porous Silica Gel,” J. Non-Cryst. Solids, 190(3), pp. 206–211. [CrossRef]
Wang, X. , Zimmermann, W. , Ng, K. C. , Chakraboty, A. , and Keller, J. U. , 2004, “ Investigation on the Isotherm of Silica Gel+Water Systems,” J. Therm. Anal. Calorim., 76(2), pp. 659–669. [CrossRef]
Ng, K. C. , Chua, H. T. , Chung, C. Y. , Loke, C. H. , Kashiwagi, T. , Akisawa, A. , and Saha, B. B. , 2001, “ Experimental Investigation of the Silica Gel–Water Adsorption Isotherm Characteristics,” Appl. Therm. Eng., 21(16), pp. 1631–1642. [CrossRef]
Li, X. , Li, Z. , Xia, Q. , and Xi, H. , 2007, “ Effects of Pore Sizes of Porous Silica Gels on Desorption Activation Energy of Water Vapor,” Appl. Therm. Eng., 27(5–6), pp. 869–876. [CrossRef]
Brunauer, S. , Deming, L. S. , Deming, W. E. , and Teller, E. , 1940, “ On a Theory of the van der Waals Adsorption of Gases,” J. Am. Chem. Soc., 62(7), pp. 1723–1732. [CrossRef]
Benesi, H. A. , and Jones, A. C. , 1959, “ An Infrared Study of the Water-Silica Gel System,” J. Phys. Chem., 63(2), pp. 179–182. [CrossRef]
Bartell, F. E. , and Bower, J. E. , 1952, “ Adsorption of Vapors by Silica Gels of Different Structures,” J. Colloid Sci., 7(1), pp. 80–93. [CrossRef]
Kays, A. L. , and London, W. M. , 1984, Compact Heat Exchanger, McGraw-Hill, New York.
Yoon, Y. H. E. E. , and Nelson, J. H. , 1984, “ Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life,” Am. Ind. Hyg. Assoc. J., 45(8), pp. 509–516. [CrossRef] [PubMed]
Xu, Z. , Cai, J. , and Pan, B. , 2013, “ Mathematically Modeling Fixed-Bed Adsorption in Aqueous Systems,” J. Zhejiang Univ., Sci., A, 14(3), pp. 155–176. [CrossRef]
Rouquerol, F. , Rouquerol, J. , Sing, K. S. W. , Llewellyn, P. , and Maurin, G. , 2014, Adsorption by Powders and Porous Solids, 2nd ed., Academic Press, Oxford, UK.
Copeland, L. , Blazek, J. , Salman, H. , and Tang, M. C. , 2009, “ Form and Functionality of Starch,” Food Hydrocolloids, 23(6), pp. 1527–1534. [CrossRef]
Broekhoff, J. , 1968, “ Studies on Pore Systems in Catalysts XI. Pore Distribution Calculations From the Adsorption Branch of a Nitrogen Adsorption Isotherm in the Case of ‘Ink-Bottle’ Type Pores,” J. Catal., 10(2), pp. 153–165. [CrossRef]
Fathieh, F. , Dehabadi, L. , Wilson, L. D. , Besant, R. W. , Evitts, R. W. , and Simonson, C. J. , 2016, “ Sorption Study of a Strach Biopolymer as an Alternative Desiccant for Energy Wheels,” ACS Sustainable Chem. Eng., 4(3), pp. 1262–1273. [CrossRef]
Wang, Y. H. , Besant, R. W. , Simonson, C. J. , and Shang, W. , 2005, “ Transient Humidity Measurements for Flow Through an Energy Wheel,” ASHRAE Trans., 111(2), pp. 353–369.
Fathieh, F. , Besant, R. W. , Evitts, R. W. , and Simonson, C. J. , 2015, “ Determination of Air-to-Air Heat Wheel Sensible Effectiveness Using Temperature Step Change Data,” Int. J. Heat Mass Transfer, 87, pp. 312–326. [CrossRef]
Niu, J. , 2001, “ Membrane-Based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance,” J. Membr. Sci., 189(2), pp. 179–191. [CrossRef]
Dehabadi, L. , Fathieh, F. , Wilson, L. D. , Evitts, R. W. , and Simonson, C. J. , 2017, “ Study of Dehumidification and Regeneration in a Starch Coated Energy Wheel,” ACS Sustainable Chem. Eng., 5(1), pp. 221–231. [CrossRef]
Kamitsos, E. I. , Patsis, A. P. , and Kordas, G. , 1993, “ Infrared-Reflectance Spectra of Heat-Treated Sol-Gel-Derived Silica,” Phys. Rev. B, 48(17), pp. 12499–12505. [CrossRef]
Gillis-D'hamers, I. , Vrancken, K. C. , Vansant, E. F. , and De Roy, G. , 1992, “ Fourier-Transform Infrared Photo-Acoustic Spectroscopy Study of the Free Hydroxyl Group Vibration: Dependence on the Pretreatment Temperature,” J. Chem. Soc. Faraday Trans., 88(14), pp. 2047–2050. [CrossRef]
Maniar, P. D. , Navrotsky, A. , Rabinovich, E. M. , Ying, J. Y. , and Benziger, J. B. , 1990, “ Energetics and Structure of Sol-Gel Silicas,” J. Non-Cryst. Solids, 124(1), pp. 101–111. [CrossRef]
Gallas, M. R. , Rosa, A. R. , Costa, T. H. , and da Jornada, J. A. H. , 1997, “ High Pressure Compaction of Nanosize Ceramic Powders,” J. Mater. Res., 12(3), pp. 764–768. [CrossRef]
Almeida, R. M. , and Pantano, C. G. , 1990, “ Structural Investigation of Silica Gel Films by Infrared Spectroscopy,” J. Appl. Phys., 68(8), pp. 4225–4232. [CrossRef]
Wood, D. L. , and Rabinovich, E. M. , 1989, “ Study of Alkoxide Silica Gels by Infrared Spectroscopy,” Appl. Spectrosc., 43(2), pp. 263–267. [CrossRef]
Rumph, H. , and Schubert, H. , 1978, Ceramic Processing Before Firing, Wiley, New York.
Decottignies, M. , Phalippou, J. , and Zarzycki, J. , 1978, “ Synthesis of Glasses by Hot-Pressing of Gels,” J. Mater. Sci., 13(12), pp. 2605–2618. [CrossRef]
Rouquerol, J. , Avnir, D. , Fairbridge, C. W. , Everett, D. H. , Haynes, J. H. , Pernicone, N. , Ramsay, J. D. F. , Sing, K. S. W. , and Unger, K. K. , 1994, “ Recommendations for the Characterization of Porous Solids,” Pure Appl. Chem., 66(8), pp. 1739–1758. [CrossRef]
Haul, R. , 1982, “ S. J. Gregg, K. S. W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: 49.50,” Ber. Bunsengesellschaft Phys. Chem., 86(10), p. 957. [CrossRef]
Donohue, M. D. , and Aranovich, G. L. , 1999, “ A New Classification of Isotherms for Gibbs Adsorption of Gases on Solids,” Fluid Phase Equilib., 158–160, pp. 557–563. [CrossRef]
Shang, W. , and Besant, R. W. , 2009, “ Effectiveness of Desiccant Coated Regenerative Wheels From Transient Response Characteristics and Flow Channel Properties—Part I: Development of Effectiveness Equations,” HVACR Res., 15(2), pp. 329–346. [CrossRef]
Wang, Y. , 2005, Transient Characteristics of Humidity Sensors and Their Application to Energy Wheels, University of Saskatchewan, Saskatoon, SK, Canada.
Eduardo, C. , and Nóbrega, L. , 2014, Desiccant-Assisted Cooling Fundamentals and Applications, Springer, London, UK.
Chang, K.-S. , Chen, M.-T. , and Chung, T.-W. , 2005, “ Effects of the Thickness and Particle Size of Silica Gel on the Heat and Mass Transfer Performance of a Silica Gel-Coated Bed for Air-Conditioning Adsorption Systems,” Appl. Therm. Eng., 25(14–15), pp. 2330–2340. [CrossRef]
Qiu, H. , Lv, L. , Pan, B. , Zhang, Q. , Zhang, W. , and Zhang, Q. , 2009, “ Critical Review in Adsorption Kinetic Models,” J. Zhejiang Univ., Sci., A, 10(5), pp. 716–724. [CrossRef]


Grahic Jump Location
Fig. 1

A conceptual view of molecular structure of amorphous silica gel

Grahic Jump Location
Fig. 2

Schematic of the small-scale energy exchanger

Grahic Jump Location
Fig. 3

Schematic of the test facility with the airflow lines, the measurement instrumentation, and the test section

Grahic Jump Location
Fig. 4

IR spectroscopy of the silica gel samples

Grahic Jump Location
Fig. 5

Particle size distribution of silica gel desiccants obtained from particle size analyzer

Grahic Jump Location
Fig. 6

Sorption isotherms for (a) SG55-77, (b) SG150-63, and (c) SG160-115 obtained through N2 gas sorption test at 77 K

Grahic Jump Location
Fig. 7

SEM images of silica gel particles coated on an aluminum substrate

Grahic Jump Location
Fig. 8

Breakthrough curves for water vapor adsorption on the mesoporous silica gels in the small-scale exchangers at different flow rates (ΔRH = 40% and Tair = 23.1 °C)

Grahic Jump Location
Fig. 9

Moisture content in the small-scale exchanger with time during the dehumidification at different flow rates (ΔRH = 40% and Tair = 23.1 °C)

Grahic Jump Location
Fig. 10

Breakthrough curves of water vapor on silica gel-coated exchanger EX160-115 at different flow rates (ΔRH = 40% and Tair = 23.1 °C)

Grahic Jump Location
Fig. 11

Latent effectiveness an equivalent wheel with the matrix coated with the same desiccant particles at different angular speeds and balanced supply and exhaust flow rate

Grahic Jump Location
Fig. 12

The latent effectiveness of tested exchangers obtained by applying DEM on the transient test data and Yoon–Nelson correlated data at different Re numbers and wheel angular speed of ω = 0.5 rpm



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In