0
Research Papers: Max Jacob Award Paper

Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper

[+] Author and Article Information
Je-Chin Han

Turbine Heat Transfer Laboratory,
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843-3123
e-mail: jc-han@tamu.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 8, 2018; final manuscript received February 27, 2018; published online July 23, 2018. Editor: Portonovo S. Ayyaswamy.

J. Heat Transfer 140(11), 113001 (Jul 23, 2018) (20 pages) Paper No: HT-18-1079; doi: 10.1115/1.4039644 History: Received February 08, 2018; Revised February 27, 2018

Gas turbines have been extensively used for aircraft engine propulsion, land-based power generation, and industrial applications. Power output and thermal efficiency of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Currently, advanced gas turbines operate at turbine RIT around 1700 °C far higher than the yielding point of the blade material temperature about 1200 °C. Therefore, turbine rotor blades need to be cooled by 3–5% of high-pressure compressor air around 700 °C. To design an efficient turbine blade cooling system, it is critical to have a thorough understanding of gas turbine heat transfer characteristics within complex three-dimensional (3D) unsteady high-turbulence flow conditions. Moreover, recent research trend focuses on aircraft gas turbines that operate at even higher RIT up to 2000 °C with a limited amount of cooling air, and land-based power generation gas turbines (including 300–400 MW combined cycles with 60% efficiency) burn alternative syngas fuels with higher heat load to turbine components. It is important to understand gas turbine heat transfer problems with efficient cooling strategies under new harsh working environments. Advanced cooling technology and durable thermal barrier coatings (TBCs) play most critical roles for development of new-generation high-efficiency gas turbines with near-zero emissions for safe and long-life operation. This paper reviews basic gas turbine heat transfer issues with advanced cooling technologies and documents important relevant papers for future research references.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Han, J. C. , and Wright, L. M. , 2006, “ Enhanced Internal Cooling of Turbine Blades and Vanes,” The Gas Turbine Handbook, National Energy Technology Laboratory, Morgantown, WV, pp. 321–352.
Han, J. C. , and Rallabandi, A. P. , 2010, “ Turbine Blade Film Cooling Using PSP Technique,” Front. Heat Mass Transfer, 1(1), pp. 1–21. [CrossRef]
Goldstein, R. J. , 1971, “ Film Cooling,” Advances in Heat Transfer, Vol. 7, Academic Press, New York, pp. 321–379. [CrossRef]
Suo, M. , 1978, “ Turbine Cooling,” Aerothermodynamics of Aircraft Gas Turbine Engines, Oates, G. , ed., Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, OH, pp. 19–40.
Elovic, E. , and Koffel, W. K. , 1983, “ Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems,” Int. J. Turbo Jet-Engines, 1(1), pp. 45–65.
Graham, R. W. , 1979, “ Fundamental Mechanisms That Influence the Estimate of Heat Transfer to Gas Turbine Blades,” ASME Paper No. 79-HT-43.
Simoneau, R. J. , and Simon, F. F. , 1993, “ Progress Towards Understanding and Predicting Convection Heat Transfer in the Turbine Gas Path,” Int. J. Heat Fluid Flow, 14(2), pp. 106–127. [CrossRef]
Han, J. C. , Dutta, S. , and Ekkad, S. V. , 2000, Gas Turbine Heat Transfer and Cooling Technology, 1st ed., Taylor & Francis, New York, p. 646.
Han, J. C. , Dutta, S. , and Ekkad, S. V. , 2012, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed., CRC Press, Boca Raton, FL, p. 843.
Sunden, B. , and Faghri, M. , 2001, Heat Transfer in Gas Turbines, WIT Press, Boston, MA. [PubMed] [PubMed]
Goldstein, R. J. , 2001, “ Heat Transfer in Gas Turbine Systems,” Ann. N. Y. Acad. Sci., 934, p. 520.
Dennis, R. , 2006, The Gas Turbine Handbook, U.S. DOE, ed., National Energy Technology Laboratory, Morgantown, WV.
Simon, T. W. , and Goldstein, R. J. , 2010, Heat Transfer in Gas Turbine Systems, Vol. 41, Begell House, Danbury, CT. [PubMed] [PubMed]
Dunn, M. G. , 2001, “ Convection Heat Transfer and Aerodynamics in Axial Flow Turbines,” ASME J. Turbomach., 123(4), pp. 637–686. [CrossRef]
Bunker, R. S. , 2006, “ Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges,” ASME Paper No. GT2006-90002.
Han, J. C. , 2006, “ Turbine Blade Cooling Studies at Texas A&M 1980-2004,” J. Thermophys. Heat Transfer, 20(2), pp. 161–187. [CrossRef]
Shih, T. I.-P. , 2006, “ Special Section: Turbine Science and Technology,” J. Propul. Power, 22(2), pp. 225–396. [CrossRef]
Downs, J. P. , and Landis, K. K. , 2009, “ Turbine Cooling Systems Design-Past, Present and Future,” ASME Paper No. GT2009-59991.
Chyu, M. K. , Mazzotta, D. W. , Siw, S. C. , Karaivanov, V. G. , Slaughter, W. S. , and Alvin, M. A. , 2009, “ Aerothermal Challenges in Syngas Hydrogen-Fired and Oxyfuel Turbines,” ASME J. Therm. Sci. Eng. Appl., 1(1), p. 011002. [CrossRef]
Han, J. C. , 2013, “ Fundamental Gas Turbine Heat Transfer,” ASME J. Therm. Sci. Eng. Appl., 5(2), p. 021007. [CrossRef]
Burggraf, F. , 1970, “ Experimental Heat Transfer and Pressure Drop With Two-Dimensional Turbulence Promoter Applied to Two opposite Walls of a Square Tube,” Augmentation of Convective Heat and Mass Transfer, A. E. Bergles and R. L. Webb eds., American Society of Mechanical Engineers, New York, pp. 70–79.
Han, J. C. , Glicksman, L. R. , and Rohsenow, W. M. , 1978, “ An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces,” Int. J. Heat Mass Transfer, 21(8), pp. 1143–1156. [CrossRef]
Han, J. C. , 1984, “ Heat Transfer and Friction in Channels With Two opposite Rib-Roughened Walls,” ASME J. Heat Transfer, 106(4), pp. 774–781. [CrossRef]
Han, J. C. , Park, J. S. , and Lei, C. K. , 1985, “ Heat Transfer Enhancement in Channels With Turbulence Promoters,” ASME J. Eng. Gas Turbines Power, 107(3), pp. 628–635. [CrossRef]
Han, J. C. , 1988, “ Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators,” ASME J. Heat Transfer, 110(2), pp. 321–328. [CrossRef]
Han, J. C. , and Park, J. S. , 1988, “ Developing Heat Transfer in Rectangular Channels With Rib Turbulators,” Int. J. Heat Mass Transfer, 31(1), pp. 183–195. [CrossRef]
Han, J. C. , Ou, S. , Park, J. S. , and Lei, C. K. , 1989, “ Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators,” Int. J. Heat Mass Transfer, 32(9), pp. 1619–1630. [CrossRef]
Park, J. S. , Han, J. C. , Huang, Y. , Ou, S. , and Boyle, R. J. , 1992, “ Heat Transfer Performance Comparisons of Five Rectangular Channels With Parallel Angled Ribs,” Int. J. Heat Mass Transfer, 35(11), pp. 2891–2903. [CrossRef]
Chandra, P. R. , Han, J. C. , and Lau, S. C. , 1988, “ Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel,” ASME J. Turbomach., 110(2), pp. 233–241. [CrossRef]
Han, J. C. , and Zhang, P. , 1991, “ Effect of Rib Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel,” ASME J. Turbomach., 113(1), pp. 123–130. [CrossRef]
Han, J. C. , Zhang, Y. M. , and Lee, C. P. , 1991, “ Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs,” ASME J. Heat Transfer, 113(3), pp. 590–596. [CrossRef]
Han, J. C. , and Zhang, Y. M. , 1992, “ High Performance Heat Transfer Ducts With Parallel and V-Shaped Broken Ribs,” Int. J. Heat Mass Transfer, 35(2), pp. 513–523. [CrossRef]
Han, J. C. , Huang, J. J. , and Lee, C. P. , 1993, “ Augmented Heat Transfer in Square Channels With Wedge-Shaped and Delta-Shaped Turbulence Promoters,” J. Enhanced Heat Transfer, 1(1), pp. 37–52. [CrossRef]
Rallabandi, A. P. , Alkhamis, N. , and Han, J. C. , 2011, “ Heat Transfer and Pressure Drop Measurements for a Square Channel With 45° Round Edged Ribs at High Reynolds Numbers,” ASME J. Turbomach., 133(3), p. 031019. [CrossRef]
Alkhamis, N. Y. , Rallabandi, A. P. , and Han, J. C. , 2011, “ Heat Transfer and Pressure Drop Correlation for Square Channels With V-Shaped Ribs at High Reynolds Numbers,” ASME J. Heat Transfer, 133(11), p. 111901. [CrossRef]
Ekkad, S. V. , and Han, J. C. , 1997, “ Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators,” Int. J. Heat Mass Transfer, 40(11), pp. 2525–2537. [CrossRef]
Ekkad, S. V. , Huang, Y. , and Han, J. C. , 1998, “ Detailed Heat Transfer Distributions in Two-Pass Smooth and Turbulated Square Channels With Bleed Holes,” Int. J. Heat Mass Transfer, 41(23), pp. 3781–3791. [CrossRef]
Ekkad, S. V. , and Han, J. C. , 2000, “ Liquid Crystal Thermography for Turbine Heat Transfer and Cooling Measurement,” Meas. Sci., Technol., 11(7), pp. 957–968. [CrossRef]
Zhang, Y. M. , Gu, W. , and Han, J. C. , 1994, “ Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls,” ASME J. Heat Transfer, 116(1), pp. 58–65. [CrossRef]
Zhang, Y. M. , Han, J. C. , and Lee, C. P. , 1997, “ Heat Transfer and Friction Characteristics of Turbulent Flow in Circular Tubes With Twisted-Tape Inserts and Axial Interrupted Ribs,” J. Enhanced Heat Transfer, 4(4), pp. 297–308. [CrossRef]
Zhang, Y. M. , Azad, G. M. S. , Han, J. C. , and Lee, C. P. , 2000, “ Heat Transfer and Friction Characteristics of Turbulent Flow in Square Ducts With Wavy and Twisted-Tape Inserts and Axial Interrupted Ribs,” J. Enhanced Heat Transfer, 7(1), pp. 35–49. [CrossRef]
Azad, G. M. S. , Huang, Y. , and Han, J. C. , 2000, “ Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique,” AIAA J. Thermophys. Heat Transfer, 14(2), pp. 186–193. [CrossRef]
Azad, G. M. S. , Huang, Y. , and Han, J. C. , 2002, “ Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique,” Int. J. Rotating Mach., 8(3), pp. 161–173.
Mhetras, S. , Han, J. C. , and Huth, M. , 2013, “ Impingement Heat Transfer From Jet Arrays on Turbulated Target Walls at Large Reynolds Numbers,” ASME J. Therm. Sci. Eng. Appl., 6(2), p. 021003. [CrossRef]
Mhetras, S. , Han, J. C. , and Huth, M. , 2014, “ Heat Transfer and Pressure Loss Measurements in a Turbulated High Aspect Ratio Channel With Large Reynolds Number Flows,” ASME J. Therm. Sci. Eng. Appl., 6(4), p. 041001. [CrossRef]
Han, J. C. , Zhang, Y. M. , and Kalkuehler, K. , 1992, “ Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls,” ASME J. Heat Transfer, 114(4), pp. 850–858. [CrossRef]
Al-Qahtani, M. , Jang, Y. J. , Chen, H. C. , and Han, J. C. , 2002, “ Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels With 45-Degree Rib Turbulators,” ASME J. Turbomach., 124(2), pp. 242–250. [CrossRef]
Wagner, J. H. , Johnson, B. V. , and Kopper, F. C. , 1991, “ Heat Transfer in Rotating Serpentine Passages With Smooth Walls,” ASME J. Turbomach., 113(3), pp. 321–330. [CrossRef]
Wagner, J. H. , Johnson, B. V. , Graziani, R. A. , and Yeh, F. C. , 1992, “ Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow,” ASME J. Turbomach., 114(4), pp. 847–857. [CrossRef]
Johnson, B. V. , Wagner, J. H. , Steuber, G. D. , and Yeh, F. C. , 1994, “ Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow,” ASME J. Turbomach., 116(1), pp. 113–123. [CrossRef]
Johnson, B. V. , Wagner, J. H. , Steuber, G. D. , and Yeh, F. C. , 1994, “ Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls,” ASME J. Turbomach., 116(1), pp. 738–744. [CrossRef]
Zhang, Y. M. , Han, J. C. , Parsons, J. A. , and Lee, C. P. , 1995, “ Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60-Degree Angled Rib Turbulators,” ASME J. Turbomach., 117(2), pp. 272–278. [CrossRef]
Dutta, S. , and Han, J. C. , 1996, “ Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations,” ASME J. Heat Transfer, 118(3), pp. 578–584. [CrossRef]
Al-Hadhrami, L. , and Han, J. C. , 2003, “ Effect of Rotation in Two-Pass Square Channels With Parallel and Crossed 45 Angled Rib Turbulators,” Int. J. Heat Mass Transfer, 46(4), pp. 653–669. [CrossRef]
Cheah, S. C. , Iacovides, H. , Jackson, D. C. , Ji, H. , and Launder, B. E. , 1996, “ LDA Investigation of the Flow Development Through Rotating U-Ducts,” ASME J. Turbomach., 118(3), pp. 590–595. [CrossRef]
Liou, T. M. , Chen, M. Y. , and Tsai, M. H. , 2002, “ Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-Deg Ribs,” ASME J. Turbomach., 124(2), pp. 260–268. [CrossRef]
Bons, J. P. , and Kerrebrock, J. L. , 1998, “ Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage with Smooth Walls,” ASME Paper No. 98-GT-464.
Son, S. Y. , Kihm, K. D. , and Han, J. C. , 2002, “ PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls,” Int. J. Heat Mass Transfer, 45(24), pp. 4809–4822. [CrossRef]
Coletti, F. , Irene Cresci, I. , and Arts, T. , 2012, “ Time-Resolved PIV Measurements of Turbulent Flow in Rotating Rib-Roughened Channel With Coriolis and Buoyancy Forces,” ASME Paper No. GT2012-69406.
Azad, G. S. , Uddin, J. M. , Han, J. C. , Moon, H. K. , and Glezer, B. , 2002, “ Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-Degree Angled Rib Turbulators,” ASME J. Turbomach., 124(2), pp. 251–259. [CrossRef]
Wright, L. M. , Fu, W. L. , and Han, J. C. , 2004, “ Thermal Performance of Angled, V-Shaped and W-Shaped Rib Turbulators in Rotating Rectangular (AR=4.1) Cooling Channels,” ASME J. Turbomach., 126(4), pp. 603–613. [CrossRef]
Fu, W. L. , Wright, L. M. , and Han, J. C. , 2005, “ Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=1:2 and AR=1:4) With 45° Angled Rib Turbulators,” ASME J. Turbomach., 127(3), pp. 164–174. [CrossRef]
Liu, Y. H. , Huh, M. , Rhee, D. H. , Han, J. C. , and Moon, H. K. , 2009, “ Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers,” ASME J. Turbomach., 131(4), p. 041017. [CrossRef]
Wright, L. M. , Fu, W. L. , and Han, J. C. , 2005, “ Influence of Entrance Geometry on Heat Transfer in Narrow Rectangular Cooling Channels (AR=4:1) With Angled Ribs,” ASME J. Heat Transfer, 127(4), pp. 378–387. [CrossRef]
Huh, M. , Liu, Y. H. , and Han, J. C. , 2009, “ Effect of Rib Height on Heat Transfer in a Two-Pass Rectangular Channel (AR= 1:4) With a Sharp Entrance at High Rotation Numbers,” Int. J. Heat Mass Transfer, 52(19–20), pp. 4635–4649. [CrossRef]
Huh, M. , Lei, J. , Liu, Y. H. , and Han, J. C. , 2011, “ High Rotation Number Effects on Heat Transfer in a Rectangular (AR= 2:1) Two-Pass Channel,” ASME J. Turbomach., 133(2), p. 021001. [CrossRef]
Chen, A. F. , Wu, H. W. , Wang, N. , and Han, J. C. , 2017, “ Heat Transfer in a Rotating Cooling Passage With Rib Turbulators and Tip Turning Vane,” Nineth World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Iguazu Falls, Brazil, June 11–15, p. RS101092.
Lei, J. , Li, S. J. , Han, J. C. , Zhang, L. , and Moon, H. K. , 2013, “ Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane,” ASME J. Heat Transfer, 135(4), p. 041930.
Wu, H. W. , Zirakzadeh, H. , Han, J. C. , Zhang, L. , and Moon, H. K. , 2018, “ Heat Transfer in a Rib and Pin Roughened Rotating Multi-Pass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection,” ASME J. Therm. Sci. Eng. Appl., 10(4), p. 021011. [CrossRef]
Rallabandi, A. P. , Lei, J. , Han, J. C. , Azad, S. , and Lee, C. P. , 2014, “ Heat Transfer Measurements in Rotating Blade-Shape Serpentine Coolant Passages With Ribbed Walls at High Reynolds Numbers,” ASME J. Turbomach., 136(9), p. 091004. [CrossRef]
Yang, S. F. , Han, J. C. , Azad, S. , and Lee, C. P. , 2015, “ Heat Transfer in Rotating Serpentine Coolant Passage With Ribbed Walls at Low Mach Numbers,” ASME J. Therm. Sci. Eng. Appl., 7(3), p. 011013. [CrossRef]
Chupp, R. E. , Helms, H. E. , McFadden, P. W. , and Brown, T. R. , 1969, “ Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils,” AIAA J. Aircr., 6(3), pp. 203–208. [CrossRef]
Metzger, D. E. , Florschuetz, L. W. , Takeuchi, D. I. , Behee, R. D. , and Berry, R. A. , 1979, “ Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air,” ASME J. Heat Transfer, 101(3), pp. 526–531. [CrossRef]
Taslim, M. E. , Setayeshgar, L. , and Spring, S. D. , 2001, “ An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts,” ASME J. Turbomach., 123(1), pp. 147–153. [CrossRef]
Wang, N. , Chen, A. F. , Zhang, M. , and Han, J. C. , 2017, “ Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets,” ASME Paper No. GT2017-63809.
Mattern, C. , and Hennecke, D. K. , 1996, “ The Influence of Rotation on Impingement Cooling,” ASME Paper No. 96-GT-161.
Glezer, B. , Moon, H. K. , Kerrebrock, J. , Bons, J. , and Guenette, G. , 1998, “ Heat Transfer in a Rotating Radial Channel with Swirling Internal Flow,” ASME Paper No. 98-GT-214.
Parsons, J. A. , Han, J. C. , and Lee, C. P. , 1998, “ Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target Walls and Radially Outward Crossflow,” Int. J. Heat Mass Transfer, 41(13), pp. 2059–2071. [CrossRef]
Akella, K. , and Han, J. C. , 1999, “ Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Target Walls,” AIAA J. Thermophys. Heat Transfer, 13(3), pp. 364–371. [CrossRef]
Metzger, D. E. , Berry, R. A. , and Bronson, J. P. , 1982, “ Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins,” ASME J. Heat Transfer, 104(4), pp. 700–706. [CrossRef]
Chyu, M. K. , Hsing, Y. C. , and Natarajan, V. , 1998, “ Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel,” ASME J. Turbomach., 120(2), pp. 362–367. [CrossRef]
Wright, L. M. , Lee, E. , and Han, J. C. , 2004, “ Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins,” AIAA J. Thermophys. Heat Transfer, 18(2), pp. 263–272. [CrossRef]
Chang, S. W. , Liou, T. M. , Chiou, S. F. , and Chang, S. F. , 2008, “ Heat Transfer in High-Speed Rotating Trapezoidal Duct With Rib-Roughened Surfaces and Air Bleeds From the Wall on the Apical Side,” ASME J. Heat Transfer, 130(6), p. 061702. [CrossRef]
Rallabandi, A. P. , Liu, Y. H. , and Han, J. C. , 2011, “ Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers,” ASME J. Therm. Sci. Eng. Appl., 3(2), p. 021007. [CrossRef]
Mahmood, G. I. , Hill, M. L. , Nelson, D. L. , Ligrani, P. M. , Moon, H. K. , and Glezer, B. , 2001, “ Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel,” ASME J. Turbomach., 123(1), pp. 115–123. [CrossRef]
Zhou, F. , and Acharya, S. , 2001, “ Mass/Heat Transfer in Dimpled Two-Pass Coolant Passages With Rotation,” Ann. N. Y. Acad. Sci., 934(1), pp. 424–431. [CrossRef]
Griffith, T. S. , Al-Hadhrami, L. , and Han, J. C. , 2003, “ Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples,” ASME J. Turbomach., 125(3), pp. 555–563. [CrossRef]
Prakash, C. , and Zerkle, R. , 1995, “ Prediction of Turbulent Flow and Heat Transfer in a Radially Rotating Square Duct,” ASME J. Turbomach., 117(2), pp. 255–261. [CrossRef]
Lin, Y. L. , Shih, T. I.-P. , Stephens, M. A. , and Chyu, M. K. , 2001, “ A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct With and Without Rotation,” ASME J. Heat Transfer, 123(2), pp. 219–232. [CrossRef]
Chen, H. C. , Jang, Y. J. , and Han, J. C. , 2000, “ Computation of Flow and Heat Transfer in Rotating Two-Pass Square Channels by a Reynolds Stress Model,” Int. J. Heat Mass Transfer, 43(9), pp. 1603–1616. [CrossRef]
Jang, Y. J. , Chen, H. C. , and Han, J. C. , 2001, “ Flow and Heat Transfer in a Rotating Square Channel With 45-Degree Angled Ribs by Reynolds Stress Turbulence Model,” ASME J. Turbomach., 123(1), pp. 124–132. [CrossRef]
Su, G. , Chen, H. C. , Han, J. C. , and Heidmann, J. D. , 2004, “ Computation of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels (AR = 1:1, 1:2, and 1:4) by a Reynolds Stress Turbulence Model,” Int. J. Heat Mass Transfer, 47(26), pp. 5665–5683. [CrossRef]
Viswanathan, A. , and Tafti, D. , 2006, “ Large Eddy Simulation of Fully Developed Flow and Heat Transfer in a Rotating Duct With 45-Degree Ribs,” ASME Paper No. GT2006-90229.
Haven, B. A. , Yamagata, D. K. , Kurosaka, M. , Yamawaki, S. , and Maya, T. , 1997, “ Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness,” ASME Paper No. 97-GT-45.
Ito, S. , Goldstein, R. J. , and Eckert, E. R. G. , 1978, “ Film Cooling of a Gas Turbine Blade,” ASME J. Eng. Power, 100(3), pp. 476–481. [CrossRef]
Camci, C. , and Arts, T. , 1985, “ Short-Duration Measurements and Numerical Simulation of Heat Transfer Along the Suction Side of a Gas Turbine Blade,” ASME J. Eng. Gas Turbines Power, 107(4), pp. 1016–1021. [CrossRef]
Nirmalan, N. V. , and Hylton, L. D. , 1990, “ An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling,” ASME J. Turbomach., 112(3), pp. 477–487. [CrossRef]
Ames, F. E. , 1998, “ Aspects of Vane Film Cooling With High Turbulence—Part II: Adiabatic Effectiveness,” ASME J. Turbomach., 120(4), pp. 777–784. [CrossRef]
Ethridge, M. I. , Cutbirth, J. M. , and Bogard, D. G. , 2001, “ Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects,” ASME J. Turbomach., 123(2), pp. 231–237. [CrossRef]
Zhang, L. , and Jaiswal, R. , 2001, “ Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint,” ASME J. Turbomach., 123(4), pp. 730–738. [CrossRef]
Ahn, J. Y. , Mhetras, S. P. , and Han, J. C. , 2005, “ Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure Sensitive Paint,” ASME J. Heat Transfer, 127(5), pp. 521–530. [CrossRef]
Mehendale, A. B. , Han, J. C. , Ou, S. , and Lee, C. P. , 1994, “ Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection—Part 2: Effect on Film Effectiveness and Heat Transfer Distribution,” ASME J. Turbomach., 116(4), pp. 730–737. [CrossRef]
Du, H. , Han, J. C. , and Ekkad, S. V. , 1998, “ Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Turbine Blade,” ASME J. Turbomach., 120(4), pp. 808–817. [CrossRef]
Li, S. J. , Yang, S. F. , Han, J. C. , Zhang, L. , and Moon, H. K. , 2016, “ Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing Edge Ejection,” AIAA J. Thermophys. Heat Transfer, 30(4), pp. 770–781. [CrossRef]
Goldstein, R. J. , Eckert, E. R. G. , and Burggraf, F. , 1974, “ Effects of Hole Geometry and Density on Three-Dimensional Film Cooling,” Int. J. Heat Mass Transfer, 17(5), pp. 595–607. [CrossRef]
Gritsch, M. , Schulz, A. , and Wittig, S. , 1998, “ Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits,” ASME J. Turbomach., 120(3), pp. 557–563. [CrossRef]
Teng, S. , Han, J. C. , and Poinsatte, P. , 2001, “ Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance,” AIAA J. Thermophys. Heat Transfer, 15(3), pp. 257–265. [CrossRef]
Mhetras, S. P. , Han, J. C. , and Rudolph, R. , 2012, “ Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade,” ASME J. Turbomach., 134(1), p. 011004. [CrossRef]
Gao, Z. , Narzary, D. P. , and Han, J. C. , 2009, “ Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes,” ASME J. Turbomach., 131(1), p. 011019. [CrossRef]
Narzary, D. P. , Liu, K. C. , Rallabandi, A. P. , and Han, J. C. , 2012, “ Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique,” ASME J. Turbomach., 134(3), p. 031006. [CrossRef]
Luckey, D. W. , Winstanley, D. K. , Hames, G. J. , and L'Ecuiyer, M. R. , 1977, “ Stagnation Region Gas Film Cooling for Turbine Blade Leading-Edge Applications,” AIAA J. Aircr., 14(5), pp. 494–501. [CrossRef]
Mick, W. J. , and Mayle, R. E. , 1988, “ Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern,” ASME J. Turbomach., 110(1), pp. 66–72. [CrossRef]
Mehendale, A. B. , and Han, J. C. , 1992, “ Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer,” ASME J. Turbomach., 114(4), pp. 707–715. [CrossRef]
Ekkad, S. V. , Han, J. C. , and Du, H. , 1998, “ Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density,” ASME J. Turbomach., 120(4), pp. 799–807. [CrossRef]
Li, S. J. , Yang, S. F. , and Han, J. C. , 2014, “ Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique,” ASME J. Turbomach., 136(5), p. 051011. [CrossRef]
Chowdhury, N. H. K. , Qureshi, S. A. , and Han, J. C. , 2017, “ Influence of Leading Edge Profile on Showerhead Film Cooling of Turbine Blade,” Int. J. Heat Mass Transfer, 115(Pt. B), pp. 895–908. [CrossRef]
Ekkad, S. V. , and Han, J. C. , 2000, “ Film Cooling Measurements on Cylindrical Models With Simulated Thermal Barrier Coating Spallation,” AIAA J. Thermophys. Heat Transfer, 14(2), pp. 194–200. [CrossRef]
Azad, G. M. S. , Han, J. C. , and Boyle, R. J. , 2000, “ Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade,” ASME J. Turbomach., 122(4), pp. 725–732. [CrossRef]
Kwak, J. S. , Ahn, J. Y. , Han, J. C. , Lee, C. P. , Bunker, R. S. , Boyle, R. J. , and Gaugler, R. E. , 2003, “ Heat Transfer Coefficients on the Squealer-Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer,” ASME J. Turbomach., 125(4), pp. 778–787. [CrossRef]
Kim, Y. W. , Downs, J. P. , Soechting, F. O. , Abdel-Messeh, W. , Steuber, G. D. , and Tanrikut, S. , 1995, “ Darryl E. Metzger Memorial Session Paper: A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger,” ASME J. Turbomach., 117(1), pp. 1–11.
Kwak, J. S. , and Han, J. C. , 2003, “ Heat Transfer Coefficient and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade,” ASME J. Turbomach., 125(4), pp. 648–657. [CrossRef]
Mhetras, S. P. , Narzary, D. , Gao, Z. , and Han, J. C. , 2008, “ Effect of a Cut-Back Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip,” ASME J. Turbomach., 130(2), p. 021002. [CrossRef]
Taslim, M. , Spring, S. , and Mehlman, B. , 1992, “ Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries,” J. Thermophys. Heat Transfer, 6(2), pp. 302–307. [CrossRef]
Martini, P. , Schulz, A. , and Bauer, H. , 2006, “ Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs,” ASME J. Turbomach., 128(1), pp. 196–205. [CrossRef]
Choi, J. , Mhetras, S. , Han, J. C. , Lau, S. C. , and Rudolph, R. , 2008, “ Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages,” ASME J. Heat Transfer, 130(1), p. 012201. [CrossRef]
Gao, Z. , Rhee, D. H. , and Han, J. C. , 2013, “ Turbine Blade Trailing Edge Film Cooling Using PSP Technique,” Int. J. Transp. Phenom., 13(3), pp. 193–205.
Langston, L. , 1980, “ Crossflows in a Turbine Cascade Passage,” ASME J. Eng. Power, 102(4), pp. 866–874. [CrossRef]
Friedrichs, S. , Hodson, H. P. , and Dawes, W. N. , 1996, “ Heat Transfer Committee Best Paper of 1995 Award: Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique,” ASME J. Turbomach., 118(4), pp. 613–621.
Oke, R. , Simon, T. , Shih, T. , Zhu, B. , Lin, Y. , and Chyu, M. , 2002, “ Film Cooling Experiments with Flow Introduced Upstream of a First Stage Nozzle Guide Vane through Slots of Various Geometries,” ASME Paper No. GT2002-30169.
Colban, W. , Thole, K. A. , and Haendler, M. , 2008, “ A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels,” ASME J. Turbomach., 130(3), p. 031007. [CrossRef]
Gao, Z. , Narzary, D. , and Han, J. C. , 2009, “ Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling,” ASME J. Turbomach., 131(4), p. 041004. [CrossRef]
Liu, K. , Yang, S. F. , and Han, J. C. , 2014, “ Influence of Coolant Density on Turbine Platform Film Cooling With Stator-Rotor Purge Flow and Compound-Angle Holes,” ASME J. Therm. Sci. Eng. Appl., 6(4), p. 041007. [CrossRef]
Chen, A. F. , Shiau, C. C. , and Han, J. C. , 2017, “ Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions,” ASME J. Turbomach., 140(1), p. 011006. [CrossRef]
Chowdhury, N. H. K. , Shiau, C. C. , Han, J. C. , Zhang, L. , and Moon, H. K. , 2017, “ Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration,” ASME J. Turbomach., 139(6), p. 061003. [CrossRef]
Chowdhury, N. H. K. , Shiau, C. C. , Han, J. C. , Zhang, L. , and Moon, H. K. , 2017, “ Turbine Vane Endwall Film Cooling Study From Cross-Row Configuration With Simulated Upstream Inlet Leakage Flow,” ASME Paper No. GT2017-63145.
Shiau, C. C. , Chen, A. F. , Han, J. C. , Lee, C. P. , and Azad, S. , 2017, “ Film Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using PSP Technique,” ASME J. Turbomach., 140(2), p. 021009. [CrossRef]
Dring, R. , Blair, M. , and Joslyn, H. , 1980, “ An Experimental Investigation of Film Cooling on a Turbine Rotor Blade,” ASME J. Eng. Power, 102(1), pp. 81–87. [CrossRef]
Takeishi, K. , Aoki, S. , Sato, T. , and Tsukagoshi, K. , 1992, “ Film Cooling on a Gas Turbine Rotor Blade,” ASME J. Turbomach., 114(4), pp. 828–834. [CrossRef]
Abhari, R. , and Epstein, A. , 1994, “ An Experimental Study of Film Cooling in a Rotating Transonic Turbine,” ASME J. Turbomach., 116(1), pp. 63–70. [CrossRef]
Ahn, J. Y. , Schobeiri, M. T. , Han, J. C. , and Moon, H. K. , 2007, “ Film Cooling Effectiveness on the Leading Edge of a Rotating Blade Using Pressure Sensitive Paint,” Int. J. Heat Mass Transfer, 50(1–2), pp. 15–25. [CrossRef]
Ahn, J. , Schobeiri, M. , Han, J. C. , and Moon, H. , 2006, “ Film Cooling Effectiveness on the Leading Edge Region of a Rotating Turbine Blade With Two Rows of Film Cooling Holes Using Pressure Sensitive Paint,” ASME J. Heat Transfer, 128(9), pp. 879–888. [CrossRef]
Suryanarayanan, A. , Mhetras, S. P. , Schobeiri, M. T. , and Han, J. C. , 2009, “ Film-Cooling Effectiveness on a Rotating Blade Platform,” ASME J. Turbomach., 131(1), p. 011014. [CrossRef]
Suryanarayanan, A. , Ozturk, B. , Schobeiri, M. T. , and Han, J. C. , 2010, “ Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique,” ASME J. Turbomach., 132(4), p. 041001. [CrossRef]
Rezasoltani, M. , Schobeiri, M. T. , and Han, J. C. , 2014, “ Experimental Investigation of the Effect of Purge Flow on Aerodynamic Performance and Film Cooling Effectiveness on a Rotating Turbine With Non-Axisymmetric Endwall Contouring,” ASME J. Turbomach., 136(9), p. 091009. [CrossRef]
Rezasoltani, M. , Lu, K. , Schobeiri, M. T. , and Han, J. C. , 2015, “ A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition,” ASME J. Turbomach., 137(5), p. 051009. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Gas turbine blade cooling schematic: (a) film cooling and (b) internal cooling [2]

Grahic Jump Location
Fig. 1

Upper sketch: cross-sectional view and heat flux distribution of a cooled vane and blade [1]

Grahic Jump Location
Fig. 3

Upper sketch: high performance ribs for turbine blade internal cooling; lower sketch: concept of flow separation-reattachment from ribs and a pair of vortex induced by angled ribs [32]

Grahic Jump Location
Fig. 5

Heat transfer enhancement distribution in two-pass smooth and ribbed channels with and without film coolant extraction holes: (a) without bleed holes and (b) with bleed holes [37]

Grahic Jump Location
Fig. 4

Heat transfer correlation for a square channel with 45 deg round edged ribs at high roughness Reynolds numbers [34]

Grahic Jump Location
Fig. 7

Conceptual view of coolant flow distribution through a two-pass rotating channel [46]

Grahic Jump Location
Fig. 8

Secondary flow vectors and dimensionless temperature contours in a rotating two-pass rectangular smooth channel [47]

Grahic Jump Location
Fig. 6

Impingement heat transfer from jet arrays on three different turbulated target walls (streamwise riblets, spherical dimples, and short pins) at large Reynolds numbers [44]

Grahic Jump Location
Fig. 9

Typical turbine blade internal cooling channel with rotation-induced vortices [20]

Grahic Jump Location
Fig. 10

Secondary flows, dimensionless temperature contours, and Nusselt number ratios in the first passage (before 180 deg turn) of rotating ribbed channels with five different aspect ratios [92]

Grahic Jump Location
Fig. 11

Left sketch: concept of coolant film profiles exists from different designs of hole angle (axial or compound angle) and hole shape (cylindrical, laidback, fanshape, or laidback fanshape hole) [109]; right sketch: concept of film cooling jet in cross flow and kidney pair of vortices [94]

Grahic Jump Location
Fig. 12

Upstream unsteady wake simulation by rotating rods and its effect on downstream blade suction-side film cooling effectiveness distribution [103]

Grahic Jump Location
Fig. 13

Left sketch: concept of film cooling on squealer blade tip with cutback rim [122]: (a) tip view and (b) pressure side view; right sketch: concept of complex end-wall passage vortex [127] and upstream and slash-face leakage [134]

Grahic Jump Location
Fig. 14

Full-scale turbine vane end-wall film cooling with two different film-hole designs: left for design 1 with many film holes at downstream region; right for design 2 with several large film holes at midpassage region [136]

Grahic Jump Location
Fig. 15

Effect of blowing ratio on leading edge film cooling effectiveness distribution at off-design condition (rotation speed = 2400 RPM) [140]

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In