Prandtl, L.
, 1905, “Über die Fiüssigkeitsbewegung bei sehr kleiner Reibung,” Verh. d. III. Int. Math. Kongr., pp. 484–491.

Fisher,
E. G.
, 1976, Extrusion of Plastics,
Wiley,
New York.

Altan,
T.
,
Oh,
S.
, and
Gegel,
H.
, 1979, Metal Forming Fundamentals and Applications,
American Society for Metals,
Materials Park, OH.

Karwe,
M. V.
, and
Jaluria,
Y.
, 1991, “Numerical Simulation of Thermal Transport Associated With a Continuously Moving Flat Sheet in Materials Processing,” ASME J. Heat Transfer,
113(3), pp. 612–619.

[CrossRef]
Sakiadis,
B. C.
, 1961, “Boundary-Layer Behavior on Continuous Solid Surface: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow,” J. AIChE,
7(1), pp. 26–28.

[CrossRef]
Sakiadis,
B. C.
, 1961, “Boundary-Layer Behavior on Continuous Solid Surface: II. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow,” J. AIChE.,
7(1), pp. 221–225.

[CrossRef]
Han,
S. H.
,
Zheng,
L. C.
,
Li,
C. R.
, and
Zhang,
X. X.
, 2014, “Coupled Flow and Heat Transfer in Viscoelastic Fluid With Cattaneo-Christov Heat Flux Model,” Appl. Math. Lett.,
38, pp. 87–93.

[CrossRef]
Zhang,
C. L.
,
Zheng,
L. C.
,
Zhang,
X. X.
, and
Chen,
G.
, 2015, “MHD Flow and Radiation Heat Transfer of Nanofluids in Porous Media With Variable Surface Heat Flux and Chemical Reaction,” Appl. Math. Model.,
39(1), pp. 165–181.

[CrossRef]
Li,
J.
,
Liu,
L.
,
Zheng,
L. C.
, and
Bin-Mohsin,
B.
, 2016, “Unsteady MHD Flow and Radiation Heat Transfer of Nanofluid in a Finite Thin Film With Heat Generation and Thermophoresis,” J. Taiwan Inst. Chem. E.,
67, pp. 226–234.

[CrossRef]
Cao,
Z.
,
Zhao,
J. H.
,
Wang,
Z. J.
,
Liu,
F. W.
, and
Zheng,
L. C.
, 2016, “MHD Flow and Heat Transfer of Fractional Maxwell Viscoelastic Nanofluid Over a Moving Plate,” J. Mol. Liq.,
222, pp. 1121–1127.

[CrossRef]
Prasannakumara,
B. C.
,
Shashikumar,
N. S.
, and
Venkatesh,
P.
, 2017, “Boundary Layer Flow and Heat Transfer of Fluid Particle Suspension With Nanoparticles Over a Nonlinear Stretching Sheet Embedded in a Porous Medium,” Nonlinear Eng.,
6(3), pp. 1–12.

[CrossRef]
Xenos,
M.
, and
Pop,
I.
, 2017, “Radiation Effect on the Turbulent Compressible Boundary Layer Flow With Adverse Pressure Gradient,” Appl. Math. Comput.,
299, pp. 153–164.

Sandeep,
N.
,
Animasaun,
I. L.
, and
Ali,
M. E.
, 2017, “Unsteady Liquid Film Flow of Electrically Conducting Magnetic-Nanofluids in the Vicinity of a Thin Elastic Sheet,” J. Comput. Theor. Nanos.,
14(2), pp. 1140–1147.

[CrossRef]
Sandeep,
N.
,
Chamkha,
A. J.
, and
Animasaun,
I. L.
, 2017, “Numerical Exploration of Magnetohydrodynamic Nanofluid Flow Suspended With Magnetite Nanoparticles,” J. Braz. Soc. Mech. Sci. Eng.,
39(9), pp. 3635–3644.

[CrossRef]
Manjunatha,
P. T.
,
Gireesha,
B. J.
, and
Prasannakumara,
B. C.
, 2017, “Effect of Radiation on Flow and Heat Transfer of MHD Dusty Fluid Over a Stretching Cylinder Embedded in a Porous Medium in Presence of Heat Source,” Int. J. Appl. Comput. Math.,
3(1), pp. 293–310.

[CrossRef]
Fang,
T. G.
,
Zhang,
J.
, and
Zhong,
Y. F.
, 2012, “Boundary Layer Flow Over a Stretching Sheet With Variable Thickness,” Appl. Math. Comput.,
218(13), pp. 7241–7252.

Subhashini,
S. V.
,
Sumathi,
R.
, and
Pop,
I.
, 2013, “Dual Solutions in a Thermal Diffusive Flow Over a Stretching Sheet With Variable Thickness,” Int. Commun. Heat Mass Transfer,
48, pp. 61–66.

[CrossRef]
Asghar,
S.
,
Ahmad,
A.
, and
Alsaedi,
A.
, 2013, “Flow of a Viscous Fluid Over an Impermeable Shrinking Sheet,” Appl. Math. Lett.,
26(12), pp. 1165–1168.

[CrossRef]
Ramesh,
G. K.
,
Prasannakumara,
B. C.
,
Gireesha,
B. J.
, and
Rashidi,
M. M.
, 2016, “Casson Fluid Flow Near the Stagnation Point Over a Stretching Sheet With Variable Thickness and Radiation,” J. Appl. Fluid Mech.,
9(3), pp. 1115–1122.

[CrossRef]
Hayat,
T.
,
Qayyum,
S.
,
Alsaedi,
A.
, and
Ahmad,
B.
, 2017, “Magnetohydrodynamic (MHD) Nonlinear Convective Flow of Walters-B Nanofluid Over a Nonlinear Stretching Sheet With Variable Thickness,” Int. J. Heat Mass Transfer,
110, pp. 506–514.

[CrossRef]
Ajayi,
T. M.
,
Omowaye,
A. J.
, and
Animasaun,
I. L.
, 2017, “Viscous Dissipation Effects on the Motion of Casson Fluid Over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis,” J. Appl. Math.,
2017, pp. 1–13.

[CrossRef]
Koriko,
O. K.
,
Omowaye,
A. J.
,
Sandeep,
N.
, and
Animasaun,
I. L.
, 2017, “Analysis of Boundary Layer Formed on an Upper Horizontal Surface of a Paraboloid of Revolution Within Nanofluid Flow in the Presence of Thermophoresis and Brownian Motion of 29 Nm CuO,” Int. J. Mech. Sci.,
124–125, pp. 22–36.

[CrossRef]
Hayat,
T.
,
Khan,
M. I.
,
Farooq,
M.
,
Alsaedi,
A.
,
Waqas,
M.
, and
Yasmeen,
T.
, 2016, “Impact of Cattaneo-Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid Over a Variable Thicked Surface,” Int. J. Heat Mass Transfer,
99, pp. 702–710.

[CrossRef]
Abdel-wahed,
M. S.
,
Elbashbeshy,
E. M. A.
, and
Emam,
T. G.
, 2015, “Flow and Heat Transfer Over a Moving Surface With Non-Linear Velocity and Variable Thickness in a Nanofluids in the Presence of Brownian Motion,” Appl. Math. Comput.,
254, pp. 49–62.

Ramesh,
G. K.
,
Prasannakumara,
B. C.
,
Gireesha,
B. J.
, and
Reddy Gorla,
R. S.
, 2015, “MHD Stagnation Point Flow of Nanofluid Towards a Stretching Surface With Variable Thickness and Thermal Radiation,” J. Nanofluids,
4(2), pp. 247–253.

[CrossRef]
Kumara,
B. C. P.
,
Ramesh,
G. K.
,
Chamkha,
A. J.
, and
Gireesha,
B. J.
, 2015, “Stagnation-Point Flow of a Viscous Fluid Towards a Stretching Surface With Variable Thickness and Thermal Radiation,” Int. J. Ind. Math.,
7(1), pp. 77–85.

http://ijim.srbiau.ac.ir/article_6202.html
Guo,
C. J.
,
Zheng,
L. C.
,
Zhang,
C. L.
,
Chen,
X. H.
, and
Zhang,
X. X.
, 2016, “Impact of Velocity Slip and Temperature Jump of Nanofluid in the Flow Over a Stretching Sheet With Variable Thickness,” Z. Naturforsch.,
71(5), pp. 1–13.

Animasaun,
I. L.
, 2016, “47 nm Alumina-Water Nanofluid Flow Within Boundary Layer Formed on Upper Horizontal Surface of Paraboloid of Revolution in the Presence of Quartic Autocatalysis Chemical Reaction,” Alex. Eng. J.,
55(3), pp. 2375–2389.

[CrossRef]
Chen,
S.
,
Liu,
F.
,
Jiang,
X.
,
Turner,
I.
, and
Anh,
V.
, 2015, “A Fast Semi-Implicit Difference Method for a Nonlinear Two-Sided Space-Fractional Diffusion Equation With Variable Diffusivity Coefficients,” Appl. Math. Comput.,
257, pp. 591–601.

Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” J. Rheol.,
27(3), pp. 201–210.

[CrossRef]
Meral,
F. C.
,
Royston,
T. J.
, and
Magin,
R.
, 2010, “Fractional Calculus in Viscoelasticity: An Experimental Study,” Commun. Nonlinear Sci. Numer. Simul.,
15(4), pp. 939–945.

[CrossRef]
Chen,
W.
,
Zhang,
J. J.
, and
Zhang,
J. Y.
, 2013, “A Variable-Order Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Concrete Structures,” Fract. Calc. Appl. Anal.,
16(1), pp. 76–92.

Song,
D. Y.
, and
Jiang,
T. Q.
, 1998, “Study on the Constitutive Equation With Fractional Derivative for the Viscoelastic Fluids-Modified Jeffreys Model and Its Application,” Rheol. Acta.,
37(5), pp. 512–517.

[CrossRef]
Du,
M. L.
,
Wang,
Z. H.
, and
Hu,
H. Y.
, 2013, “Measuring Memory With the Order of Fractional Derivative,” Sci. Rep.,
3(1), p. 3431.

Baskin,
E.
, and
Iomin,
A.
, 2004, “Superdiffusion on a Comb Structure,” Phys. Rev. Lett.,
93(12), p. 120603.

[CrossRef] [PubMed]
Hayat,
T.
,
Hussain,
Z.
,
Alsaedi,
A.
, and
Asghar,
S.
, 2016, “Carbon Nanotubes Effects in the Stagnation Point Flow Towards a Nonlinear Stretching Sheet With Variable Thickness,” Adv. Powder Technol.,
27(4), pp. 1677–1688.

[CrossRef]
Ajayi,
T. M.
,
Omowaye,
A. J.
, and
Animasaun,
I. L.
, 2017, “Effects of Viscous Dissipation and Double Stratification on MHD Casson Fluid Flow Over a Surface With Variable Thickness: Boundary Layer Analysis,” Int. J. Eng. Res. Africa,
28, pp. 73–89.

[CrossRef]
Devi,
S. P. A.
, and
Prakash,
M.
, 2014, “Steady Nonlinear Hydromagnetic Flow Over a Stretching Sheet With Variable Thickness and Variable Surface Temperature,” J. KSIAM,
18(3), pp. 245–256.

Hejazi,
H.
,
Moroney,
T.
, and
Liu,
F.
, 2014, “Stability and Convergence of a Finite Volume Method for the Space Fractional Advection-Dispersion Equation,” J. Comput. Appl. Math.,
255, pp. 684–697.

[CrossRef]
Zhang,
X. X.
,
Crawford,
J. W.
,
Deeks,
L. K.
,
Stutter,
M. I.
,
Bengough,
A. G.
, and
Young,
I. M.
, 2005, “A Mass Balance Based Numerical Method for the Fractional Advection-Dispersion Equation: Theory and Application,” Water Resour. Res.,
41(7), p. W05439.

Liu,
L.
,
Zheng,
L. C.
,
Liu,
F. W.
, and
Zhang,
X. X.
, 2016, “Anomalous Convection Diffusion and Wave Coupling Transport of Cells on Comb Frame With Fractional Cattaneo-Christov Flux,” Commun. Nonlinear Sci. Numer. Simul.,
38, pp. 45–58.

[CrossRef]
Liu,
F.
,
Turner,
I.
,
Anh,
V.
,
Yang,
Q.
, and
Burrage,
K.
, 2013, “A Numerical Method for the Fractional Fitzhugh-Nagumo Monodomain Model,” Anziam J.,
54, pp. 608–629.

[CrossRef]
Liu,
L.
,
Zheng,
L. C.
,
Liu,
F. W.
, and
Zhang,
X. X.
, 2016, “An Improved Heat Conduction Model With Riesz Fractional Cattaneo-Christov Flux,” Int. J. Heat Mass Transfer,
103, pp. 1191–1197.

[CrossRef]
Khader,
M. M.
, and
Megahed,
A. M.
, 2014, “Differential Transformation Method for Studying Flow and Heat Transfer Due to Stretching Sheet Embedded in Porous Medium With Variable Thickness, Variable Thermal Conductivity, and Thermal Radiation,” Appl. Math. Mech.-Engl. Ed.,
35(11), pp. 1387–1400.

[CrossRef]
Zhao,
J. H.
,
Zheng,
L. C.
,
Zhang,
X. X.
, and
Liu,
F. W.
, 2016, “Unsteady Natural Convection Boundary Layer Heat Transfer of Fractional Maxwell Viscoelastic Fluid Over a Vertical Plate,” Int. J. Heat Mass Transfer,
97, pp. 760–766.

[CrossRef]
Liu,
L.
,
Zheng,
L. C.
, and
Zhang,
X. X.
, 2016, “Fractional Anomalous Diffusion With Cattaneo-Christov Flux Effects in a Comb-like Structure,” Appl. Math. Model.,
40(13–14), pp. 6663–6675.

[CrossRef]
Liu,
L.
,
Zheng,
L. C.
, and
Liu,
F. W.
, 2017, “Temporal Anomalous Diffusion and Drift of Particles in a Comb Backbone With Fractional Cattaneo-Christov Flux,” J. Stat. Mech.,
2017, p. 043208.

[CrossRef]
Liu,
F.
,
Zhuang,
P.
, and
Burrage,
K.
, 2012, “Numerical Methods and Analysis for a Class of Fractional Advection-Dispersion Models,” Comput. Math. Appl.,
64(10), pp. 2990–3007.

[CrossRef]
Zhao,
J. H.
,
Zheng,
L. C.
,
Zhang,
X. X.
, and
Liu,
F. W.
, 2016, “Convection Heat and Mass Transfer of Fractional MHD Maxwell Fluid in a Porous Medium With Soret and Dufour Effects,” Int. J. Heat Mass Transfer,
103, pp. 203–210.

[CrossRef]
Salahuddin,
T.
,
Malik,
M. Y.
,
Hussain,
A.
,
Bilal,
S.
, and
Awais,
M.
, 2016, “MHD Flow of Cattanneo-Christov Heat Flux Model for Williamson Fluid Over a Stretching Sheet With Variable Thickness: Using Numerical Approach,” J. Magn. Magn. Mater.,
401, pp. 991–997.

[CrossRef]