Research Papers

Free Convection, Forced Convection, and Acoustic Vibrations in a Constant Temperature Vertical Tube

[+] Author and Article Information
T. W. Jackson, W. B. Harrison

Georgia Institute of Technology, Atlanta, Ga.

W. C. Boteler

Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Ga.

J. Heat Transfer 81(1), 68-74 (Feb 01, 1959) (7 pages) doi:10.1115/1.4008137 History: Received May 05, 1958; Published February 01, 1959; Online February 19, 2019


Experimental studies of heat transfer to air with superposed forced and free convection were reported in a previous paper [1]. In studies reported in this paper, the same experimental system was employed, but a complication was added in the form of acoustic vibrations in the flow field. By comparison of the results with and without acoustic vibrations under conditions which were otherwise the same, an effort has been made to determine the effect of acoustic vibrations on heat transfer. The Nusselt modulus, based on the log mean temperature difference, ranged from 17.2 to 50.6; the Graetz modulus, based on the bulk or average temperature of the air, ranged from 40.2 to 1633; and the Grashof-Prandtl D/L modulus, based on properties of air at the wall temperature, ranged from 0.967 × 105 to 1.26 × 106.

The results indicated that sound pressure levels below approximately 118 decibels had little effect on the heat-transfer coefficient. Below 118 decibels free convection forces were evident. Above 118 decibels free convection forces were apparently negligible and the effect of sound appeared to be considerable.

Copyright © 1959 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In