Abstract

We present a multifractal artificial terrain generation method that uses the 3D Weierstrass–Mandelbrot function to control roughness. By varying the fractal dimension used in terrain generation across three different values, we generate 60 unique off-road terrains. We use gradient maps to categorize the roughness of each terrain, consisting of low-, semi-, and high-roughness areas. To test how the fractal dimension affects the difficulty of vehicle traversals, we measure the success rates, vertical accelerations, pitch and roll rates, and traversal times of an autonomous ground vehicle traversing 20 randomized straight-line paths in each terrain. As we increase the fractal dimension from 2.3 to 2.45 and from 2.45 to 2.6, we find that the median area of low-roughness terrain decreases by 13.8% and 7.16%, the median area of semi-rough terrain increases by 11.7% and 5.63%, and the median area of high-roughness terrain increases by 1.54% and 3.33%, respectively. We find that the median success rate of the vehicle decreases by 22.5% and 25% as the fractal dimension increases from 2.3 to 2.45 and from 2.45 to 2.6, respectively. Successful traversal results show that the median root-mean-squared vertical accelerations, median root-mean-squared pitch and roll rates, and median traversal times all increase with the fractal dimension.

References

1.
Carruth
,
D. W.
,
Walden
,
C. T.
,
Goodin
,
C.
, and
Fuller
,
S. C.
,
2022
, “
Challenges in Low Infrastructure and off-Road Automated Driving
,”
Fifth International Conference on Connected and Autonomous Driving (MetroCAD)
,
Detroit, MI
,
Apr. 28–29
, IEEE, pp.
13
20
.
2.
Defense Advanced Research Projects Agency
,
2004
, “
Grand Challenge Final Report
,” https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading Room/DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf, Accessed January 30, 2023.
3.
Thrun
,
S.
,
Montemerlo
,
M.
,
Dahlkamp
,
H.
,
Stavens
,
D.
,
Aron
,
A.
,
Diebel
,
J.
,
Fong
,
P.
, et al
,
2006
, “
Stanley: The Robot That Won the Darpa Grand Challenge
,”
J. Field Rob.
,
23
(
9
), pp.
661
692
.
4.
Smelik
,
R. M.
,
Tutenel
,
T.
,
Bidarra
,
R.
, and
Benes
,
B.
,
2014
, “A Survey on Procedural Modelling for Virtual Worlds,”
Computer Graphics Forum
,
O.
Deussen
and
R.
Zhang
, eds., Vol.
33
,
Wiley Online Library
, pp.
31
50
.
5.
Mandelbrot
,
B. B.
,
1975
, “
Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands
,”
Proc. Natl. Acad. Sci. U. S. A.
,
72
(
10
), pp.
3825
3828
.
6.
Gasch
,
C.
,
Chover
,
M.
,
Remolar
,
I.
, and
Rebollo
,
C.
,
2020
, “
Procedural Modelling of Terrains With Constraints
,”
Multimedia Tools Appl.
,
79
(
41–42
), pp.
31125
31146
.
7.
Doran
,
J.
, and
Parberry
,
I.
,
2010
, “
Controlled Procedural Terrain Generation Using Software Agents
,”
IEEE Trans. Comput. Intell. AI Games
,
2
(
2
), pp.
111
119
.
8.
Génevaux
,
J.-D.
,
Galin
,
E.
,
Guérin
,
E.
,
Peytavie
,
A.
, and
Benes
,
B.
,
2013
, “
Terrain Generation Using Procedural Modelś Based on Hydrology
,”
ACM Trans. Graphics (TOG)
,
32
(
4
), pp.
1
13
.
9.
Zhou
,
H.
,
Sun
,
J.
,
Turk
,
G.
, and
Rehg
,
J. M.
,
2007
, “
Terrain Synthesis From Digital Elevation Models
,”
IEEE Trans. Visual. Comput. Graphics
,
13
(
4
), pp.
834
848
.
10.
Zhang
,
J.
,
Li
,
C.
,
Zhou
,
P.
,
Wang
,
C.
,
He
,
G.
, and
Qin
,
H.
,
2022
, “
Authoring Multi-Style Terrain With Global-to-Local Control
,”
Graphical Models
,
119
, p.
101122
.
11.
Dawkins
,
J. J.
,
Bevly
,
D. M.
, and
Jackson
,
R. L.
,
2012
, “
Fractal Terrain Generation for Vehicle Simulation
,”
Int. J. Veh. Auton. Syst.
,
10
(
1
), p.
3
.
12.
Dawkins
,
J. J.
,
Bevly
,
D. M.
, and
Jackson
,
R. L.
,
2012
, “
Evaluation of Fractal Terrain Model for Vehicle Dynamic Simulations
,”
J. Terramech.
,
49
(
6
), pp.
299
307
.
13.
Dawkins
,
J. J.
,
2014
, “
Model Based Off-Road Terrain Profile Estimation
,”
American Control Conference
,
Portland, OR
,
June 4–6
, IEEE, pp.
2792
2797
.
14.
Ausloos
,
M.
, and
Berman
,
D.
,
1985
, “
A Multivariate Weierstrass–Mandelbrot Function
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
400
(
1819
), pp.
331
350
.
15.
Vecchio
,
G.
,
Palazzo
,
S.
,
Guastella
,
D. C.
,
Carlucho
,
I.
,
Albrecht
,
S. V.
,
Muscato
,
G.
, and
Spampinato
,
C.
,
2024
, “
Midgard: A Robot Navigation Simulator for Outdoor Unstructured Environments
,”
In European Robotics Forum
,
C.
Secchi
and
L.
Marconi
, eds.,
Rimini, Italy
,
Mar. 13–15
.
16.
Hudson
,
C.
,
Goodin
,
C.
,
Miller
,
Z.
,
Wheeler
,
W.
, and
Carruth
,
D.
,
2020
, “
Mississippi State University Autonomous Vehicle Simulation Library
,”
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
,
Virtual
,
Nov. 3–5
, pp.
11
13
.
17.
Toupet
,
O.
,
Del Sesto
,
T.
,
Ono
,
M.
,
Myint
,
S.
,
Vander Hook
,
J.
, and
McHenry
,
M.
,
2020
, “
A ROS-Based Simulator for Testing the Enhanced Autonomous Navigation of the Mars 2020 Rover
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 7–14
, IEEE, pp.
1
11
.
18.
Collins
,
J.
,
Chand
,
S.
,
Vanderkop
,
A.
, and
Howard
,
D.
,
2021
, “
A Review of Physics Simulators for Robotic Applications
,”
IEEE Access
,
9
, pp.
51416
51431
.
19.
Koenig
,
N.
, and
Howard
,
A.
,
2004
, “
Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Sendai, Japan
,
Sept. 28–Oct. 2
.
20.
Rohmer
,
E.
,
Singh
,
S. P. N.
, and
Freese
,
M.
,
2013
, “
V-rep: A Versatile and Scalable Robot Simulation Framework
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
1321
1326
.
21.
Michel
,
O.
,
2004
, “
Cyberbotics Ltd. Webots: Professional Mobile Robot Simulation
,”
Int. J. Adv. Rob. Sys.
,
1
(
1
), p.
5
.
22.
Young
,
P.
,
Kysar
,
S.
, and
Bos
,
J. P.
,
2020
, “
Unreal as a Simulation Environment for Off-Road Autonomy
,”
Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure
,
Virtual
,
Apr. 26–30
, p. 114150F.
23.
Clearpath Robotics
,
2023
, “Husky,” https://clearpathrobotics.com/husky-unmannedground-vehicle-robot/, Accessed Apr. 20, 2023.
24.
NVIDIA
,
2023
, “Physx,” https://developer.nvidia.com/physx-sdk, Accessed Apr. 20, 2023.
25.
Erez
,
T.
,
Tassa
,
Y.
, and
Todorov
,
E.
,
2015
, “
Simulation Tools for Model-Based Robotics: Comparison of Bullet, Havok, Mujoco, ode and Physx
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
4397
4404
.
26.
Krüsi
,
P.
,
Furgale
,
P.
,
Bosse
,
M.
, and
Siegwart
,
R.
,
2017
, “
Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic Nonplanar Environments
,”
J. Field Rob.
,
34
(
5
), pp.
940
984
.
27.
Kysar
,
S.
,
Bos
,
J.
,
Kurup
,
A.
,
Jeffries
,
Z.
,
Carter
,
J.
,
Majhor
,
C.
,
Jayakumar
,
P.
, and
Smith
,
W.
,
2021
, “
Unstructured With a Point: Validation and Robustness Evaluation of Point-Cloud Based Path Planning
,” SAE Technical Paper, Technical Report.
28.
Epic Games
,
2023
, “
Creating and Using Custom Heightmaps and Layers
,” https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/Landscape/Custom/, Accessed May 14, 2023.
29.
Biswas
,
S.
, and
Hazra
,
R.
,
2018
, “
Robust Edge Detection Based on Modified Moore-Neighbor
,”
Optik
,
168
, pp.
931
943
.
30.
Wolfgang Schwanghart
,
2023
, “
gradient8
,” https://www.mathworks.com/matlabcentral/fileexchange/18655-gradient8, Accessed January 30, 2023.
You do not currently have access to this content.