The effect of cardiac infarction on the flow patterns in cardiac left ventricular ejection was studied using a realistic model which was made from the profile of the left ventricle of a dog heart in diastole. A Coordinate measuring machine was used to measure the left ventricular coordinates, and these were input into a three-dimensional flow simulation package. The left ventricular wall motion was described by having the walls moved towards the center of the aortic outlet, and in the case of infarcted tissue, the ventricular wall movement was diminished to simulate infarction flow behavior. The final ventricular volume varied from 25 percent to 54.1 percent of the initial volume in cases without and with infarction, respectively. The maximum blood ejection velocities and ventricular pressure decreased significantly in the presence of infarction. Infarcted areas showed complex blood flow vortex formation not present in the healthy ventricles. The Computational technique presented here predicts infarction flow effects which could be observed with measurement techniques such as ultrasound and magnetic resonance imaging, allowing a finer detail of understanding than using either simulation or experimental measurements alone.

1.
Azhari
H.
, and
Gath
I.
,
1991
, “
Discrimination Between Healthy and Diseased Hearts by Spectral Decomposition of Their Left Ventricular Geometry
,”
IEEE Trans. Med. Imaging
, Vol.
10
, pp.
207
215
.
2.
Boesiger
P.
,
Maier
S. E.
,
Kecheng
L.
,
Scheidegger
M. B.
and
Meier
D.
,
1992
, “
Visualization and Quantification of the Human Blood Flow by Magnetic Resonance Imaging
,”
J. Biomechanics
, Vol.
25
, pp.
55
67
.
3.
Bogen
D. K.
,
Rabinowitz
S. A.
,
Needleman
A.
,
McMahon
T. A.
, and
Abelmann
W. H.
,
1980
, “
An Analysis of the Mechanical Disadvantage of Myocardial Infarction in the Canine Left Ventricle
,”
Circ. Res.
, Vol.
47
, pp.
728
741
.
4.
Elings
V. B.
,
Jahn
G. E.
, and
Vogel
J. H. K.
,
1977
, “
A Theoretical Model of Regionally Ischemic Myocardium
,”
Circ. Res.
, Vol.
41
, pp.
722
729
.
5.
Georgiadis
J. G.
,
Wang
M.
, and
Pasipoularides
A.
,
1992
, “
Computational Fluid Dynamics of Left Ventricular Ejection
,”
Annals Biomed. Eng.
, Vol.
20
, pp.
81
97
.
6.
Gordon
D. G.
,
1976
, “
The Physics of Left Ventricular Ejection and its Implications for Muscle Mechanics
,”
Europ. J. Cardiol.
4
/Suppl., pp.
87
95
.
7.
Hatle, L., and Angelsen, B. A., 1985, Doppler Ultrasound in Cardiology: Physical Principles and Clinical Applications, Lea & Febiger, Philadelphia, 2nd Ed., pp. 1–331.
8.
McQueen
D. M.
, and
Peskin
C. S.
,
1985
, “
Computer-Assisted Design of Butterfly Bileaflet Valves for the Mitral Position
,”
Scand. J. Thor. Cardiovasc. Surg.
, Vol.
19
, pp.
139
148
.
9.
Panerai
R. B.
,
Smaill
B. H.
,
Borst
C.
,
Chamberlain
J. H.
, and
Sayers
McA.
,
1979
, “
A Model of Left Ventricular Function in the Denervated Heart
,”
J. Biomed Eng.
, Vol.
1
, pp.
161
171
.
10.
Pasipoularides
A.
,
Murgo
J. P.
,
Miller
J. W.
, and
Craig
W. E.
,
1987
, “
Nonobstructive Left Ventricular Ejection Pressure Gradients in Man
,”
Circ. Res.
, Vol.
61
, pp.
220
227
.
11.
Peskin
C. S.
, and
McQueen
D. M.
,
1992
, “
Cardiac Fluid Dynamics
,”
Crit. Rev. Biomed. Eng.
, Vol.
20
, pp.
451
459
.
12.
Peskin
C. S.
, and
McQueen
D. M.
,
1980
, “
Modeling Prosthetic Heart Valves for Numerical Analysis of Blood Flow in the Heart
,”
J. Comp. Phys.
, Vol.
37
, pp.
113
132
.
13.
Rushmer, R. F., 1976, Cardiovascular Dynamics, Fourth Ed., W. B. Saunders Co., Philadelphia.
14.
Shechan
F. H.
,
Schoffer
J.
,
Mathey
D. G.
,
Kellett
M. A.
,
Smith
H.
,
Bolson
E. L.
, and
Dodge
Harold
,
1986
, “
Measurement of Regional Wall Motion From Biplane Contrast Ventriculograms: A Comparison of the 30 Degree Right Anterior Oblique and 60 Degree Left Anterior Oblique Projections in Patients With Acute Myocardial Infarction
,”
Circulation
, Vol.
74
, pp.
796
804
.
15.
Song
S. M.
, and
Leahy
R. M.
,
1991
, “
Computation of 3-D Velocity Fields From 3-D Cine CT Images of a Human Heart
,”
IEEE Trans. Med. Imaging
, Vol.
10
, pp.
295
306
.
16.
Taylor
T. W.
,
Okino
H.
, and
Yamaguchi
T.
,
1993
, “
Three-Dimensional Analysis of Left Ventricular Ejection Using Computational Fluid Dynamics
,”
J. Biomechanical Eng.
, Vol.
116
, pp.
127
130
, 1993.
17.
Thompson
J. F.
,
Warsi
Z. U. A.
, and
Mastin
C. W.
,
1982
, “
Boundary-Fitted Coordinate Systems for Numerical Solutions of Partial Differential Equations— A Review
,”
J. Comp. Physics.
, Vol.
47
, pp.
1
108
.
This content is only available via PDF.
You do not currently have access to this content.