We present a method for solving the governing equations from our anisotropic biphasic theory of tissue-equivalent mechanics (Barocas and Tranquillo, 1997) for axisymmetric problems. A mixed finite element method is used for discretization of the spatial derivatives, and the DASPK subroutine (Brown et al., 1994) is used to solve the resulting differential-algebraic equation system. The preconditioned GMRES algorithm, using a preconditioner based on an extension of Dembo’s (1994) adaptation of the Uzawa algorithm for viscous flows, provides an efficient and scaleable solution method, with the finite element method discretization being first-order accurate in space. In the cylindrical isometric cell traction assay, the chosen test problem, a cylindrical tissue equivalent is adherent at either end to fixed circular platens. As the cells exert traction on the collagen fibrils, the force required to maintain constant sample length, or load, is measured. However, radial compaction occurs during the course of the assay, so that the cell and network concentrations increase and collagen fibrils become aligned along the axis of the cylinder, leading to cell alignment along the axis. Our simulations predict that cell contact guidance leads to an increase in the load measured in the assay, but this effect is diminished by the tendency of contact guidance to inhibit radial compaction of the sample, which in turn reduces concentrations and hence the measured load.

1.
Barocas
V. H.
,
Moon
A. G.
, and
Tranquillo
R. T.
,
1995
, “
The fibroblast-populated collagen microsphere assay of cell traction force—Part 2. Measurement of the cell traction parameter
,”
J. Biomech E.
, Vol.
117
(
2
), pp.
161
170
.
2.
Barocas
V. H.
, and
Tranquillo
R. T.
,
1997
, “
An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibril network deformation, and contact guidance
,” J.
Biomech. E.
, Vol.
119
(
2
), pp.
135
145
.
3.
Bell
E.
,
Ivarsson
B.
, and
Merrill
C.
,
1979
, “
Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro
,”
Proc. Natl. Acad. Sci. USA
, Vol.
76
, pp.
1274
1278
.
4.
Brown
P. N.
,
Hindmarsh
A. C.
, and
Petzold
L. R.
,
1994
, “
Using Krylov methods in the solution of large-scale differential-algebraic systems
,”
SIAM J. Sci. Comp.
, Vol.
15
, pp.
1467
1488
.
5.
Delvoye
P.
,
Wiliquet
P.
,
Leveque
J. L.
,
Nusgens
B.
, and
Lapiere
C.
,
1991
, “
Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel
,”
J. Invest. Dermatol.
, Vol.
97
, pp.
898
902
.
6.
Dembo
M.
, and
Harlow
F.
,
1986
, “
Cell motion, contractile networks, and the physics of interpenetrating reactive flow
,”
Biophys. J.
, Vol.
50
(
1
), pp.
109
121
.
7.
Dembo
M.
,
1989
, “
Field theories of the cytoplasm
,”
Comments Theoretical Biology
, Vol.
1
(
3
), pp.
159
177
.
8.
Dembo, M., 1994, “Continuum Theories of Cytoskeletal Mechanics: Solution by a finite element method,” Los Alamos National Laboratory Unclassified Report #94-3454.
9.
Ewing
R. E.
,
Iliev
O. P.
,
Margenov
S. D.
, and
Vassilevski
P. S.
,
1995
, “
Numerical study of three multilevel preconditioners for solving 2D unsteady Navier-Stokes equations
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
121
(
1-4
), pp.
177
86
.
10.
Felder
S.
, and
Elson
E. L.
,
1990
, “
Mechanics of fibroblast locomotion: quantitative analysis of forces and motions at the leading lamellas of fibroblasts
,”
J. Cell. Biol.
, Vol.
111
(6 Pt 1), pp.
2513
2526
.
11.
Girton, T. S., V. H. Barocas, and R. T. Tranquillo, 1997, “Reorientation and alignment of collagen fibrils and tissue cells in confined compression of a tissue-equivalent,” in preparation.
12.
Grinnell
F.
,
1994
, “
Fibroblasts, myofibroblasts, and wound contraction
,”
J. Cell Biol.
, Vol.
124
(
4
), pp.
401
404
.
13.
Hughes, T. J. R., 1987, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.
14.
Khomami
B.
,
Talwar
K.
, and
Ganpule
H.
,
1994
, “
A comparative study of higher- and lower-order finite element techniques for computation of viscoelastic flows
,”
J. Rheology
, Vol.
38
(
2
), pp.
255
289
.
15.
King
R. C.
,
Apelian
M. R.
,
Armstrong
R. C.
, and
Brown
R. A.
,
1988
, “
Numerically stable finite element techniques for viscoelastic calculations in smooth and singular geometries
,”
J. Non-Newtonian Fluid Mechanics.
Vol.
29
, pp.
147
216
.
16.
Knapp, D. M., V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold, and R. T. Tranquillo, 1997, “Rheology of reconstituted type I collagen gel in confined compression,” J. Rheology, to appear.
17.
Kolodney
M. S.
, and
Wysolmerski
R. B.
,
1992
, “
Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study
,”
J. Cell Biol.
, Vol.
117
, pp.
73
82
.
18.
Kolodney
M. S.
, and
Elson
E. L.
,
1993
, “
Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts
,”
J. Biol. Chem.
, Vol.
268
(
32
), pp.
23850
23855
.
19.
Lai
W. M.
,
Hou
J. S.
, and
Mow
V. C.
,
1991
, “
A triphasic theory for the swelling and deformation behaviors of articular cartilage
,”
J. Biomech. E.
, Vol.
113
, pp.
245
258
.
20.
Lee
J.
,
Leonard
M.
,
Oliver
T.
,
Ishihara
A.
, and
Jacobson
K.
,
1994
, “
Traction forces generated by locomoting keratocytes
,”
J. Cell Biol.
, Vol.
127
(6 Pt 2), pp.
1957
1964
.
21.
Marchal
J. M.
, and
Crochet
M. J.
,
1987
, “
A new mixed finite element for calculating viscoelastic flow
,”
J. Non-Newtonian Fluid Mechanics
, Vol.
26
, pp.
77
114
.
22.
Moon
A. G.
, and
Tranquillo
R. T.
,
1993
, “
The fibroblast-populated collagen microsphere assay of cell traction force—Part 1. Continuum Model
,”
AIChE J.
, Vol.
39
, pp.
163
177
.
23.
Mow
V. C.
,
Kuei
S. C.
,
Lai
W. M.
, and
Armstrong
C. G.
,
1980
, “
Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments
,”
J. Biomech. E.
, Vol.
102
, pp.
73
84
.
24.
Mow, V. C., M. K. Kwan, W. M. Lai, and M. H. Holmes, 1986, “A finite deformation theory for nonlinearly permeable soft hydrated biological tissues, in: Frontiers in Biomechanics, Schmid-Schonbein, G. W., Woo, S. L.-Y., and Zweifach, B. W., eds., pp. 153–179.
25.
Petzold, L. R., 1983, “A description of DASSL: a differential/algebraic system solver,” in: Scientific Computing: Applications of Mathematics and Computing to the Physical Sciences, Stepleman, R. S., ed., pp. 65–68.
26.
Rasmussen
H. K.
, and
Hassager
O.
,
1993
, “
Simulation of transient viscoelastic flow
,”
J. Non-Newtonian Fluid Mechanics
, Vol.
46
, pp.
289
305
.
27.
Rasmussen
H. K.
, and
Hassager
O.
,
1995
, “
Simulation of transient viscoelastic flow with second order time integration
,”
J. Non-Newtonian Fluid Mechanics
, Vol.
56
, pp.
65
84
.
28.
Saad
Y.
, and
Schultz
M. H.
,
1986
, “
GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comp.
, Vol.
7
, pp.
856
869
.
29.
Spilker
R. L.
, and
Suh
J.-K.
,
1990
, “
Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissues
,”
Computers and Structures
, Vol.
35
(
4
), pp.
423
439
.
30.
Tung
L.
,
1986
, “
An ultrasensitive transducer for measurement of isometric contractile force from single heart cells
,”
Pflugers Arch.
, Vol.
407
(
1
), pp.
109
115
.
31.
Wayne
J. S.
,
Woo
S. L.-Y.
, and
Kwan
M. K.
,
1991
, “
Application of the u-p finite element method to the study of articular cartilage
,”
J. Biomech. E.
, Vol.
113
, pp.
397
403
.
This content is only available via PDF.
You do not currently have access to this content.