High-grade stenosis can produce conditions in which the artery may collapse. A one-dimensional numerical model of a compliant stenosis was developed from the collapsible tube theory of Shapiro. The model extends an earlier model by including the effects of frictional losses and unsteadiness. The model was used to investigate the relative importance of several physical parameters present in the in vivo environment. The results indicated that collapse can occur within the stenosis. Frictional loss was influential in reducing the magnitude of collapse. Large separation losses could prevent collapse outright even with low downstream resistances. However, the degree of stenosis was still the primary parameter governing the onset of collapse. Pulsatile solutions demonstrated conditions that produce cyclic collapse within the stenosis. This study predicts certain physiologic conditions in which collapse of arteries may occur for high-grade stenoses.

1.
Glagov
S.
,
Zarins
C. K.
,
Giddens
D. P.
, and
Ku
D. N.
, “
Hemodynamics and Atherosclerosis, Insights and Perspectives Gained From Studies of Human Arteries
,”
Arch. Path. Lab. Med.
, Vol.
112
,
1988
, pp.
1018
1031
.
2.
North American Symptomatic Carotid Endarterectomy Trial Collaborators
, “
Beneficial effect of carotid endarterectomy patients with high-grade carotid stenosis
,”
New England J. Med.
, Vol.
325
,
1991
, pp.
445
463
.
3.
MRC European Carotid Surgery Trial
, “
Interim results for symptomatic patients with severe (70–99%) or mild (0–29%) stenosis
,”
Lancet
, Vol.
337
,
1991
, pp.
1235
1243
.
4.
Rutherford, J. D., and Braumwald, E., “Chronic Ischemic Heart Disease,” in: Heart Disease, 4th ed., Braunwald, E., ed., W. B. Saunders Co., Philadelphia, 1992.
5.
Davies
M. J.
, and
Thomas
A. C.
, “
Plaque Fissuring—the Cause of Acute Myocardial Infarcation, Sudden Ischemic Death, and Crescendo Angina
,”
Br. Heart J.
, Vol.
53
,
1985
, pp.
363
373
.
6.
Falk
E.
, “
Plaque Rupture With Severe Pre-existing Stenosis Precipitating Coronary Thrombosis (Characteristics of Coronary Atherosclerotic Plaques Underlying Fatal Occlusive Thrombi)
,”
Br. Heart J.
, Vol.
50
,
1983
, pp.
127
134
.
7.
Constantinides, P., “Plaque Hemorrhages, Their Genesis and Their Role in Supra-Plaque Thrombosis and Atherogenesis,” Pathobiology of the Human Atherosclerotic Plaque, Springer-Verlag, New York, 1990, pp. 393–411.
8.
Imparato
A. M.
,
Riles
T. S.
, and
Gorstein
F.
, “
The Carotid Bifurcation Plaque: Pathological Findings Associated With Cerebral ischemic
,”
Stroke
, Vol.
10
, No.
3
,
1979
, pp.
238
244
.
9.
Binns, R. L., and Ku, D. N., “Effect of Stenosis on Wall Motion: A Possible Mechanism of Stroke and Transient Ischemic Attack,” Arteriosclerosis, Nov./Dec. 1989, pp. 842–847.
10.
McCord
B. N.
, and
Ku
D. N.
, “
Mechanical Rupture of the Atherosclerotic Plaque Fibrous Cap
.”
1993
ASME Bioengineering Conference
, ASME BED-Vol.
24
, pp.
324
326
.
11.
Aoki
T.
, and
Ku
D. N.
, “
Collapse of Diseased Arteries With Eccentric Cross Section
,”
J. Biomech.
, Vol.
26
,
1993
, pp.
133
142
.
12.
Loree
H. M.
,
Kamm
R. D.
,
Stringfellow
R. G.
, and
Lee
R. T.
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
, Vol.
71
,
1992
, pp.
850
858
.
13.
Lee
R. T.
,
Richardson
S. G.
,
Loree
H. M.
, et al., “
Prediction of Mechanical Properties of Human Atherosclerotic Tissue by High-Frequency Intravascular Ultrasound Imaging
,”
Arteriosclerosis
, Vol.
12
,
1992
, pp.
1
5
.
14.
Ku
D. N.
,
Zeigler
M. N.
, and
Downing
J. M.
, “
One-Dimensional Steady Inviscid Flow Through a Stenotic Collapsible Tube
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
,
1990
, pp.
444
450
.
15.
Shapiro
A. H.
, “
Steady Flow in Collapsible Tubes
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
99
,
1977
, pp.
126
127
.
16.
Kamm
R. D.
, and
Shapiro
A. H.
, “
Unsteady Flow in a Collapsible Tube Subjected to External Pressure or Body Forces
,”
J. Fluid Mech.
, Vol.
95
,
1979
, pp.
1
78
.
17.
Kimmel
E.
,
Kamm
R. D.
, and
Shapiro
A. H.
, “
Numerical Solutions for Steady and Unsteady Flow in a Model of the Pulmonary Airways
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
, Nov.
1988
, pp.
292
299
.
18.
Elad
D.
, and
Kamm
R. D.
, “
Parametric Evaluation of Forced Expiration Using a Numerical Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
, Aug.
1989
, pp.
192
199
.
19.
Fung, Y. C., Biodynamics: Circulation, Springer-Verlag, New York, 1981, pp. 173–176.
20.
Oates
G. C.
, “
Fluid Flow in Soft-Walled Tubes: I. Steady Flow
,”
Med. Biol. Eng.
, Vol.
18
, pp.
773
778
.
21.
Cowley
S. J.
, “
Elastic Jumps on Fluid-Filled Elastic Tubes
,”
J. Fluid Mech.
, Vol.
116
,
1982
, pp.
459
473
.
22.
Archie
J. P.
, “
Technique and Clinical Results of Carotid Stump Back-Pressure to Determine Selective Shunting During Carotid Endarterectomy
,”
J. Vascular Surgery
, Vol.
13
,
1991
, pp.
319
327
.
23.
Caro, C. G., Pedley, R. J., Schroter, R. C., and Seed, N. A., The Mechanics of the Circulation, Oxford University Press, New York, 1978.
24.
Weizsacker
H. W.
, and
Pinto
J. G.
, “
Isotrophy and Anisotrophy of the Arterial Wall
,”
Journal of Biomechanics
, Vol.
21
,
1988
, pp.
477
487
.
25.
Papageorgiou
G. L.
, and
Jones
N. B.
, “
Physical Modelling of the Arterial Wall. Part I: Testing of Tubes of Various Materials
,”
Journal of Biomedical Engineering
, Vol.
9
,
1987
, pp.
153
156
.
26.
Powell, B. E., “Experimental Measurements of Flow Through Stenotic Collapsible Tubes,” Master’s Thesis, ME, Georgia Tech, 1991.
27.
Born, G. V. R., and Richardson, P. D., “Mechanical Properties of Human Atherosclerotic Lesions,” in: Glagov, S., Newman, W. P., Schaffa, S. A., eds., Pathophysiology of the Human Atherosclerotic Plaque, Springer-Verlag, New York, 1990, pp. 413–423.
28.
Reneman
R. S.
,
van Merod
T.
,
Hick
P.
,
Muytjens
A. M. M.
, and
Hocks
A. P. G.
, “
Age-Related Changes in Carotid Artery Wall Properties in Men
,”
Ultrasound in Med. & Biol.
, Vol.
12
:
6
,
1986
, pp.
465
471
.
29.
Young
D. F.
, and
Tsai
F. Y.
, “
Flow Characteristics in Models of Arterial Stenoses-I. Steady Flow
,”
J. Biomechanics
, Vol.
6:4
,
1973
, pp.
395
410
; and “Flow Characteristics in Models of Arterial Stenoses-II. Unsteady Flow,” J. Biomechanics, Vol. 6:5, 1973, pp. 547–559.
30.
Cancelli
C.
, and
Pedley
T. J.
, “
A Separated Flow Model for Collapsible-Tube Oscillations
,”
J. Fluid Mech.
, Vol.
157
,
1985
, pp.
375
404
.
31.
Stergiopulos
N.
,
Moore
J. E.
,
Strassle
A.
,
Ku
D. N.
, and
Meister
J. J.
, “
Steady Flow Tests and Demonstration of Collapse on Models of Compliant Axisymmetric Stenoses
,”
Advances in Bioengineering
, ASME BED-Vol.
26
,
1993
, pp.
455
458
.
32.
Siebes
M.
, and
D’Argenio
D. Z.
, “
Mathematical Model of Flow Through a Partially Collapsible Coronary Stenosis
,”
Advances in Bioengineering
, ASME BED-Vol.
17
,
1990
, pp.
139
142
.
33.
Siebes
M.
, “
Effect of Nonlinear Wall Mechanics on Compliant Coronary Stenoses: A Flow Simulation Study
,”
Advances in Bioengineering
, ASME BED-Vol.
20
,
1991
, pp.
345
348
.
34.
Judd, R. M., and Mates, R. E., “Flow Through a Stenosis in a Compliant Tube,” Proc. 2nd Intl Symp on Biofluid Mechanics and Biorheology, D. Liepsch, ed., Munich, Germany, 1989.
35.
Kececioglu
I.
,
McClurken
M. E.
,
Kamm
R. D.
, and
Shapiro
A. H.
, “
Steady Supercritical Flow in Collapsible Tubes. Part 1. Experimental Observations
,”
J. Fluid Mech.
, Vol.
109
,
1981
, pp.
367
389
.
This content is only available via PDF.
You do not currently have access to this content.