An alternative concept of the relationship between morphological and elastic properties of trabecular bone is presented and applied to human tissue from several anatomical locations using a digital approach. The three-dimensional morphology of trabecular bone was assessed with a microcomputed tomography system and the method of directed secants as well as the star volume procedure were used to compute mean intercept length (MIL) and average bone length (ABL) of 4 mm cubic specimens. Assuming isotropic elastic properties for the trabecular tissue, the general elastic tensors of the bone specimens were determined using the homogenization method and the closest orthotropic tensors were calculated with an optimization algorithm. The assumption of orthotropy for trabecular bone was found to improve with specimen size and hold within 6.1 percent for a 4 mm cube size. A strong global relationship (r2 = 0.95) was obtained between fabric and the orthotropic elastic tensor with a minimal set of five constants. Mean intercept length and average bone length provided an equivalent power of prediction. These results support the hypothesis that the elastic properties of human trabecular bone from an arbitrary anatomical location can be estimated from an approximation of the anisotropic morphology and a prior knowledge of tissue properties.

1.
Choi
K.
,
Kuhn
J. L.
,
Ciarelli
M. J.
, and
Goldstein
S. A.
,
1990
, “
The elastic moduli of human subchondral, trabecular and cortical bone tissue and the size dependency of cortical bone modulus
,”
J. Biomech.
, Vol.
23
, pp.
1103
1113
.
2.
Chung
H.
,
Wehrli
F. W.
,
Williams
J. L.
, and
Kugelmass
S. D.
,
1993
, “
Relationship between NMR transverse relaxation, trabecular bone architecture, and strength
,”
Proc. National Academy of Science
, Vol.
90
, pp.
10250
10254
.
3.
Ciarelli
M. J.
,
Goldstein
S. A.
,
Kuhn
J. J.
,
Cody
D. D.
, and
Brown
M. J.
,
1991
, “
Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography
,”
J. Orthop. Res.
, Vol.
9
, pp.
674
682
.
4.
Compston
J. E.
,
1994
, “
Connectivity of cancellous bone: assessment and mechanical implications
,”
Bone
, Vol.
15
, pp.
463
466
.
5.
Cowin
S. C.
,
1985
, “
The relationship between the elasticity tensor and the fabric tensor
,”
Mechanics of Materials
, Vol.
4
, pp.
137
147
.
6.
Cowin, S. C., 1989, Bone Mechanics, CRC Press, Boca Raton, FL.
7.
Gibson
L. J.
,
1985
, “
The mechanical behaviour of cancellous bone
,”
J. Biomech.
, Vol.
18
, pp.
317
328
.
8.
Goldstein
S. A.
,
Goulet
R.
, and
McCubbrey
D.
,
1993
, “
Measurement and significance of three dimensional architecture to the mechanical integrity of trabecular bone
,”
Calcif. Tissue Int.
, Vol.
53
, pp.
127
133
.
9.
Goulet
R. W.
,
Goldstein
S. A.
,
Ciarelli
M. J.
,
Kuhn
J. L.
,
Brown
M. B.
, and
Feldkamp
L. A.
,
1994
, “
The relationship between the structural and orthogonal compressive properties of trabecular bone
,”
J. Biomech.
, Vol.
27
, pp.
375
389
.
10.
Harrigan
T. P.
,
Jasty
M.
,
Mann
R. W.
, and
Harris
W. H.
,
1988
, “
Limitations of the continuum assumption in cancellous bone
,”
J. Biomech.
, Vol.
21
, pp.
269
275
.
11.
Harrigan
T. P.
, and
Mann
R. W.
,
1984
, “
Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor
,”
Journal of Materials Science
, Vol.
19
, pp.
761
767
.
12.
He
Q.-C.
, and
Curnier
A.
,
1995
, “
A more fundamental approach to damaged elastic stress-strain relations
,”
International Journal of Solids and Structures
, Vol.
32
, pp.
1433
1457
.
13.
Hodgskinson
R.
, and
Currey
J. D.
,
1990
, “
The effect of variation in structure on the Young’s modulus of cancellous bone: a comparison of human and non-human material
,”
Proc. Investigation of Mechanical Engineers
, Vol.
204
, pp.
115
121
.
14.
Hollister
S. J.
, and
Kikuchi
N.
,
1992
, “
A comparison of homogenization and standard mechanics analyses for periodic porous composites
,”
Comp. Mech.
, Vol.
10
, pp.
73
95
.
15.
Hollister
S. J.
,
Brennan
J. M.
, and
Kikuchi
N.
,
1994
, “
A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress
,”
J. Biomech.
, Vol.
27
, pp.
433
444
.
16.
Kanatani
K.
,
1984
, “
Distribution of directional data and fabric tensor
,”
Int. J. Engng. Sci.
, Vol.
22
, p.
149
149
.
17.
Keaveny
T. M.
,
Borchers
R. F.
,
Gibson
J. G.
, and
Hayes
W. C.
,
1993
, “
Theoretical analysis of the experimental artifact in trabecular bone compressive modulus
,”
J. Biomech.
, Vol.
26
, pp.
599
607
.
18.
Keller
T. S.
,
1994
, “
Predicting the compressive mechanical behavior of bone
,”
J. Biomech.
, Vol.
27
, pp.
1159
1168
.
19.
Ko, C.-C., Douglas, W. H., and Cheng, Y.-S., 1995, “Intrinsic mechanical competence of cortical and trabecular bone measured by nanoindentation and microindentation probes,” Proc. Summer Bioengineering Conference of the ASME, Beaver Creek, Vol. 1, pp. 415–416.
20.
Kuhn
J. L.
,
Goldstein
S. A.
,
Feldkamp
L. A.
,
Goulet
R. W.
, and
Jesion
G.
,
1990
, “
Evaluation of a microcomputed tomography system to study trabecular bone structure
,”
J. Orthop. Res.
, Vol.
8
, pp.
833
842
.
21.
Langton
C. M.
,
Njeh
C. F.
,
Hodgskinson
R.
, and
Currey
J. D.
,
1996
, “
Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation
,”
Bone
, Vol.
18
, pp.
495
503
.
22.
Linde
F.
, and
Hvid
I.
,
1989
, “
The effect of constraint on the mechanical behaviour of trabecular bone specimens
,”
J. Biomech.
, Vol.
22
, pp.
485
490
.
23.
Meyer
G. H.
,
1867
, “
Die Architektur der Spongiosa
,”
Archiv fuer Anatomie, Physiologie und wissenschaftliche Medizin
, Vol.
34
, pp.
615
628
.
24.
Odgaard
A.
,
Jensen
E. B.
, and
Gundersen
H. J. G.
,
1990
, “
Estimation of structural anisotropy based on volume orientation. A new concept
,”
Journal of Microscopy
, Vol.
159
, pp.
335
342
.
25.
Odgaard
A.
, and
Linde
F.
,
1991
, “
The underestimation of Young’s modulus in compressive testing of cancellous bone specimens
,”
J. Biomech.
, Vol.
24
, pp.
691
698
.
26.
Sanchez-Palencia, E., 1980, Non-homogeneous Media and Vibration Theory, Springer Verlag, Berlin.
27.
Shieh, S. J., Govind, S., Gudipaty, K., Subramanian, R., and Grimm, M. J., 1995, “High resolution ultrasonic measurement of the material properties of cortical and trabecular bone in the human vertebrae,” ASME Summer Bioengineering Conference of the ASME, Beaver Creek, Vol. 1, pp. 413–414.
28.
Snyder, B. D., and Hayes, W. C., 1990, “Multiaxial structure-property relations in trabecular bone,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L.-Y. Woo, eds., Springer Verlag, New York, pp. 31–59.
29.
Turner
C. H.
,
Cowin
S. C.
,
Rho
J. Y.
,
Ashman
R. B.
, and
Rice
J. C.
,
1990
, “
The fabric dependance of the orthotropic elastic constants of cancellous bone
,”
J. Biomech.
, Vol.
23
, pp.
549
561
.
30.
Whitehouse
W. J.
,
1974
, “
The quantitative morphology of anisotropic trabecular bone
,”
Journal of Microscopy
, Vol.
101
, pp.
153
168
.
31.
Zhu
M.
,
Keller
T. S.
, and
Spengler
D. M.
,
1994
, “
Effects of specimen load-bearing and free surface layers on the compressive mechanical proerties of cellular materials
,”
J. Biomech.
, Vol.
27
, pp.
57
66
.
32.
Zysset
P. K.
, and
Curnier
A.
,
1995
, “
An alternative model for anisotropic elasticity based on fabric tensors
,”
Mechanics of Materials
, Vol.
21
, pp.
243
250
.
33.
Zysset, P. K., Guo, X. E., Hoffler, C. E., and Goldstein, S. A., 1996, “Elastic modulus of human cortical and trabecular tissue lamellae,” Trans. 43rd Annual Meeting of the ORS, San Francisco, Vol. 2, pp. 798.
This content is only available via PDF.
You do not currently have access to this content.