An analytically solvable model that considers the elasticity of the cornea is developed for use in the current and novel corneal refractive surgery procedures. The model assumes that the cornea is a thin spheroid shell with an elastic response to intraocular pressure. The value of the Young’s modulus of the post-operative cornea and its dependence on the geometric parameters of the ablation zone are estimated employing “best-fit” approach to nomograms currently used in corneal refractive surgery. These elasticity parameters are applied for quantitative modeling of different types of refractive surgery for myopia.

1.
Trokel
,
S. J.
,
Srinivasan
,
R.
, and
Braren
,
B.
,
1983
, “
Excimer Laser Surgery of the Cornea
,”
Am. J. Ophthalmol.
,
94
, p.
125
125
.
2.
Marshall
,
J.
,
Trokel
,
S.
,
Rothery
,
S.
, and
Krueger
,
R. R.
,
1986
, “
Photoablative Reprofiling of the Cornea Using an Excimer Laser: Photorefractive Keratectomy
,”
Lasers Ophthalmol.
,
1
, pp.
21
48
.
3.
Pallikaris
,
I. G.
, and
Saiganos
,
D. S.
,
1994
, “
Excimer Laser In-Situ Keratomileusis and Photorefractive Keratectomy for Correction of High Myopia
,”
J. Refract. Corneal Surg.
,
10
, pp.
498
510
.
4.
Seiler
,
T.
,
1993
, “
HO:YAG Laser Thermokeratoplasty for Hyperopia
,”
Ophthalmol. Clin. North Am.
,
5
, pp.
773
780
.
5.
Moreira
,
H.
,
Campos
,
M.
,
Sawusch
,
M. R.
, et al.
,
1993
, “
Holmium Laser Thermokeratoplasty
,”
Ophthalmology
,
100
, pp.
752
761
.
6.
Schanzlin
,
D. J.
,
Asbell
,
P. A.
,
Burris
,
T. E.
, and
Durrie
,
D. S.
,
1997
, “
The Instrastromal Corneal Ring Segments: Phase II Results for the Correction of Myopia
,”
Ophthalmology
,
104
, pp.
1067
1078
.
7.
Holmes-Higgin
,
D. K.
,
Baker
,
P. C.
, et al.
,
1999
, “
Characterization of the Aspheric Corneal Surface With Intrastromal Corneal Ring Segments
,”
J. Refract. Surg.
,
15
, pp.
520
528
.
8.
Juhasz
,
T.
,
Loesel
,
F. H.
,
Kurtz
,
R. M.
,
Horvath
,
C.
,
Bille
,
J. F.
, and
Mourou
,
G.
,
1999
, “
Corneal Refractive Surgery With Femtosecond Lasers
,”
IEEE J. Sel. Top. Quantum Electron.
,
5
, pp.
902
910
.
9.
Williams, S., and Grant, W., 1985, “Bending Resistance in Modeling the Cornea as a Thin Shell and the Effects in Radial Keratotomy,” ASME Biomechanics Symposium, ASME AMD-Vol. 68/FED-Vol. 21, pp. 81–84.
10.
Bryant, M. R., and Velinsky, S. A., 1989, “Design of Keratorefractive Surgical Procedures: Radial Keratotomy,” Advances in Design Automation, ASME DE-Vol. 19, pp. 383–391.
11.
Hanna
,
K. D.
,
Jouve
,
F.
,
Bercovier
,
M. H.
, and
Waring
, III,
G. O.
,
1989
, “
Computer Simulation of Lamellar Keratectomy and Laser Myopic Keratomileusis
,”
J. Refract. Surg.
,
4
, pp.
222
231
.
12.
Huang
,
T.
,
Bisarnsin
,
T.
,
Schachar
,
R. A.
, and
Black
,
T. D.
,
1988
, “
Corneal Curvature Change Due to Structural Alteration by Radial Keratotomy
,”
ASME J. Biomech. Eng.
,
110
, pp.
249
253
.
13.
Vito
,
R. P.
,
Shin
,
T. J.
, and
McCarey
,
B. E.
,
1989
, “
A Mechanical Model of the Cornea: The Effects of Physiological and Surgical Factors on Radial Keratotomy Surgery
,”
Refract. Corneal Surg.
,
5
, pp.
82
88
.
14.
Mow
,
C. C.
,
1968
, “
A Theoretical Model of the Cornea for Use in Studies of Tonometry
,”
Bull. Math. Biophys.
,
30
, pp.
437
453
.
15.
Rand
,
R. H.
,
Lubkin
,
S. R.
, and
Howland
,
H. C.
,
1991
, “
Analytical Model of Cornea Surgery
,”
ASME J. Biomech. Eng.
,
113
, pp.
239
241
.
16.
Bryant
,
M. R.
,
Marchi
,
V.
, and
Juhasz
,
T.
,
2000
, “
Mathematical Model of Picosecond Laser Keratomileusis for High Myopia
,”
J. Refract. Surg.
,
16
, pp.
155
162
.
17.
Timoshenko, S., and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York.
18.
Munnerlyn
,
C. R.
,
Koons
,
S. J.
, and
Marshall
,
J.
,
1988
, “
A Technique for Laser Refractive Surgery
,”
J. Cataract Refract. Surg.
,
14
, pp.
46
52
.
19.
Blaker
,
W. J.
, and
Hersh
,
P. S.
,
1994
, “
Theoretical and Clinical Effects of Preoperative Corneal Curvature on Excimer Laser Photorefractive Keratectomy
,”
J. Refract. Surg.
,
10
, pp.
571
574
.
20.
Colliac
,
J. P.
,
Shammas
,
J. H.
, and
Bart
,
D. J.
,
1994
, “
Photorefractive Keratectomy for the Correction of Myopia and Astigmatism
,”
Am. J. Ophthalmol.
,
117
, pp.
369
380
.
21.
Woo
,
S. L.-Y.
,
Kobayashi
,
A. S.
,
Schlegel
,
W. A.
, and
Lawrence
,
C.
,
1972
, “
Nonlinear Material Properties of Intact Cornea and Sclera
,”
Exp. Eye Res.
,
14
, pp.
29
39
.
22.
Bryant
,
M. R.
, and
McDonnel
,
P. J.
,
1996
, “
Constitutive Laws for Biomechanical Modeling of Refractive Surgery
,”
ASME J. Biomech. Eng.
,
118
, pp.
473
481
.
23.
Le Grand Y., 1965, Optique physiologique, Tome 1. La Dioptrique de l’oeil et sa Correction, 2nd ed., Paris, Revue d’Optique, pp. 147–159.
24.
Colliac
,
J. P.
, and
Shammas
,
H. J.
,
1993
, “
Optics for Photorefractive Keratectomy
,”
J. Cataract Refract. Surg.
,
19
, pp.
356
363
.
25.
Casebeer J. C., Lamellar Refractive Surgery, ISBN: 1-55642-286-5, Slack Incorp.
26.
Sletten
,
K.
,
Yen
,
K.
,
Sayegh
,
F.
, et al.
,
1999
, “
An in Vivo Model of Femtosecond Laser Intrastromal Refractive Surgery
,”
J. Ophthalmic Laser Surgery
,
30
, pp.
742
749
.
You do not currently have access to this content.