Observations in compression tests of articular cartilage have revealed unequal load increments for compression and release of the same amplitude applied to a disk with an identical previously imposed compression (in equilibrium). The mechanism of this asymmetric transient response is investigated here using a nonlinear fibril-reinforced model. It is found that the asymmetry is predominantly produced by the fibril stiffening with its tensile strain. In addition, allowing the hydraulic permeability to decrease significantly with compressive dilatation of cartilage increases the transient fibril strain, resulting in a stronger asymmetry. Large deformation also enhances the asymmetry as a consequence of stronger fibril stiffening.
Issue Section:
Technical Brief
1.
Li
, L. P.
, Soulhat
, J.
, Buschmann
, M. D.
, and Shirazi-Adl
, A.
, 1999
, “Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,” Clin. Biomech.
, 14
, pp. 673
–682
.2.
Li
, L. P.
, Buschmann
, M. D.
, and Shirazi-Adl
, A.
, 2000
, “A Fibril Reinforced Nonhomogenous Poroelastic Model for Articular Cartilage: Inhomogeneous Responses in Unconfined Compression
,” J. Biomech.
, 33
, pp. 1533
–1541
.3.
Soulhat
, J.
, Buschmann
, M. D.
, and Shirazi-Adl
, A.
, 1999
, “A Fibril-Network Reinforced Biphasic Model of Cartilage in Unconfined Compression
,” ASME J. Biomech. Eng.
, 121
, pp. 340
–347
.4.
Mow
, V. C.
, Kuei
, S. C.
, Lai
, W. M.
, and Armstrong
, C. G.
, 1980
, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,” ASME J. Biomech. Eng.
, 102
, pp. 73
–84
.5.
Brown
, T. D.
, and Singerman
, R. J.
, 1986
, “Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,” J. Biomech.
, 19
, pp. 597
–605
.6.
Spilker
, R. L.
, Suh
, J. K.
, and Mow
, V. C.
, 1990
, “Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis
,” ASME J. Biomech. Eng.
112
, pp. 138
–146
.7.
Buschmann
, M. D.
, Soulhat
, J.
, Shirazi-Adl
, A.
, Jurvelin
, J. S.
, and Hunziker
, E. B.
, 1998
, “Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,” J. Biomech.
, 31
, pp. 171
–178
.8.
Fortin
, M.
, Soulhat
, J.
, Shirazi-Adl
, A.
, Hunziker
, E. B.
, and Buschmann
, M. D.
, 2000
, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,” ASME J. Biomech. Eng.
, 122
, pp. 1
–6
.9.
Lai
, W. M.
, and Mow
, V. C.
, 1980
, “Drag Induced Compression of Articular Cartilage During a Permeation Experiment
,” Biorheology
, 17
, pp. 111
–123
.10.
Li
, L. P.
, Shirazi-Adl
, A.
, and Buschmann
, M. D.
, 1999
, “The Asymmetry of Compression vs. Release for Articular Cartilage in Unconfined Compression Can Be Described by a Nonlinear Poroelastic Model
,” Trans. Annu. Meet. — Orthop. Res. Soc.
, 24
, p. 160
160
.Copyright © 2001
by ASME
You do not currently have access to this content.