To optimize the mechanical properties and integrity of tissue-engineered aortic heart valves, it is necessary to gain insight into the effects of mechanical stimuli on the mechanical behavior of the tissue using mathematical models. In this study, a finite-element (FE) model is presented to relate changes in collagen fiber content and orientation to the mechanical loading condition within the engineered construct. We hypothesized that collagen fibers aligned with principal strain directions and that collagen content increased with the fiber stretch. The results indicate that the computed preferred fiber directions run from commissure to commissure and show a strong resemblance to experimental data from native aortic heart valves.
Issue Section:
Soft Tissue
1.
Schoen
, F. J.
, and Levy
, R. J.
, 1999
, “Tissue Heart Valves: Current Challenges and Future Research Perspectives
,” J. Biomed. Mater. Res.
, 47
(4
), pp. 439
–465
.2.
Sodian
, R.
, Hoerstrup
, S. P.
, Sperling
, J. S.
, Daebritz
, S.
, Martin
, D. P.
, Moran
, A. M.
, Kim
, B. S.
, Schoen
, F. J.
, Vacanti
, J. P.
, and Mayer
, Jr., J. E.
, 2000
, “Early in vivo Experience With Tissue-Engineered Trileaflet Heart Valves
,” Circulation
, 102
(19
), pp. III22–III29
III22–III29
.3.
Hoerstrup
, S. P.
, Sodian
, R.
, Daebritz
, S.
, Wang
, J.
, Bacha
, E. A.
, Martin
, D. P.
, Moran
, A. M.
, Guleserian
, K. J.
, Sperling
, J. S.
, Kaushal
, S.
, Vacanti
, J. P.
, Schoen
, F. J.
, and Mayer
, Jr., J. E.
, 2000
, “Functional Living Trileaflet Heart Valves Grown in vitro
,” Circulation
, 102
(19
), pp. III44–III49
III44–III49
.4.
Sodian
, R.
, Hoerstrup
, S. P.
, Sperling
, J. S.
, Daebritz
, S.
, Martin
, D. P.
, Schoen
, F. J.
, Vacanti
, J. P.
, and Mayer
, Jr., J. E.
, 2000
, “Tissue Engineering of Heart Valves: in vitro Experiences
,” Ann. Thorac. Surg.
, 70
(1
), pp. 140
–144
.5.
Sauren, A. A. H. J., 1981, “The Mechanical Behavior of the Aortic Valve,” Ph.D. thesis, Technische Hogeschool Eindhoven.
6.
Guidry
, C.
, and Grinnell
, F.
, 1985
, “Studies on the Mechanism of Hydrated Collagen Gel Reorganization by Human Skin Fibroblasts
,” J. Cell. Sci.
, 79
, pp. 67
–81
.7.
Rubin, E., and Farber, J. L., 1998, Pathology, Lippincott-Raven, Philadelphia.
8.
Christie, G. W., and Medland, I. C., 1982, “A Non-Linear Finite Element Stress Analysis of Bioprosthetic Heart Valves,” In: Gallagher, R. H., Simon, B. R., Johnson, P. C., and Gross, J. F., (eds.), Finite Elements in Biomechanics, Wiley, Chichester, pp. 153–179.
9.
Li
, J.
, Luo
, X. Y.
, and Kuang
, Z. B.
, 2001
, “A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves
,” J. Biomech.
, 34
(10
), pp. 1279
–1289
.10.
Peskin
, C. S.
, and McQueen
, D. M.
, 1994
, “Mechanical Equilibrium Determines the Fractal Fiber Architecture of Aortic Heart Valve Leaflets
,” Am. J. Physiol.
, 266
(1
), pp. H319–H328
H319–H328
.11.
Cowin
, S. C.
, 1986
, “Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium
,” J. Biomech. Eng.
, 108
(1
), pp. 83
–88
.12.
Cowin
, S. C.
, Sadegh
, A. M.
, and Luo
, G. M.
, 1992
, “An Evolutionary Wolff’s Law for Trabecular Architecture
,” J. Biomech. Eng.
, 114
(1
), pp. 129
–136
.13.
Dallon
, J. C.
, and Sherratt
, J. A.
, 1998
, “A Mathematical Model for Fibroblast and Collagen Orientation
,” Bull. Math. Biol.
, 60
(1
), pp. 101
–129
.14.
Dallon
, J. C.
, Sherratt
, J. A.
, and Maini
, P. K.
, 1999
, “Mathematical Modelling of Extracellular Matrix Dynamics Using Discrete Cells: Fiber Orientation and Tissue Regeneration
,” J. Theor. Biol.
, 199
(4
), pp. 449
–471
.15.
Dallon
, J.
, Sherratt
, J.
, Maini
, P.
, and Ferguson
, M.
, 2000
, “Biological Implications of a Discrete Mathematical Model for Collagen Deposition and Alignment in Dermal Wound Repair
,” IMA J. Math. Appl. Med. Biol.
, 17
(4
), pp. 379
–393
.16.
Olsen
, L.
, Maini
, P. K.
, Sherratt
, J. A.
, and Dallon
, J. C.
, 1999
, “Mathematical Modelling of Anisotropy in Fibrous Connective Tissue
,” Math. Biosci.
, 158
(2
), pp. 145
–170
.17.
Barocas
, V. H.
, and Tranquillo
, R. T.
, 1997
, “An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment and Cell Contact Guidance
,” J. Biomech. Eng.
, 119
(2
), pp. 137
–145
.18.
Barocas
, V. H.
, and Tranquillo
, R. T.
, 1997
, “A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Effect of Contact Guidance on Isometric Cell Traction Measurement
,” J. Biomech. Eng.
, 119
(3
), pp. 261
–268
.19.
van Oijen, C. H. G. A., van de Vosse, F. N., and Baaijens, F. P. T., 2002, “An Updated Lagrange Formulation of A Constitutive Model for Incompressible Composite Materials at Finite Strains,” submitted to Computer Methods in Applied Mechanics and Engineering.
20.
Carew
, E. O.
, Barber
, J. E.
, and Vesely
, I.
, 2000
, “Role of Preconditioning and Recovery Time in Repeated Testing of Aortic Valve Tissues: Validation Through Quasilinear Viscoelastic Theory
,” Ann. Biomed. Eng.
, 28
(9
), pp. 1093
–1100
.21.
Billiar
, K. L.
, and Sacks
, M. S.
, 2000
, “Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part II: A Structural Constitutive Model
,” J. Biomech. Eng.
, 122
(4
), pp. 327
–335
.22.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, Englewood Cliffs, NJ.
23.
Segal, A., 1984, SEPRAN User Manual, Standard Problems and Programmers Guide, Ingenieursbureau SEPRA, Leidschendam, the Netherlands.
24.
MacKenna
, D.
, Summerour
, S. R.
, and Villarreal
, F. J.
, 2000
, “Role of Mechanical Factors in Modulating Cardiac Fibroblast Function and Extracellular Matrix Synthesis
,” Cardiovasc. Res.
, 46
(2
), pp. 257
–263
.25.
Kolpakov
, V.
, Rekhter
, M. D.
, Gordon
, D.
, Wang
, W. H.
, and Kulik
, T. J.
, 1995
, “Effect of Mechanical Forces on Growth and Matrix Protein Synthesis in the in vitro Pulmonary Artery. Analysis of the Role of Individual Cell Types
,” Circ. Res.
, 77
(4
), pp. 823
–831
.26.
Kim
, B. S.
, Nikolovski
, J.
, Bonadio
, J.
, and Mooney
, D. J.
, 1999
, “Cyclic Mechanical Strain Regulates the Development of Engineered Smooth Muscle Tissue
,” Nat. Biotechnol.
, 17
(10
), pp. 979
–983
.27.
Torbet
, J.
, and Ronzie`re
, M. C.
, 1984
, “Magnetic Alignment of Collagen During Self-Assembly
,” Biochem. J.
, 219
(3
), pp. 1057
–1059
.28.
Dubey
, N.
, Letourneau
, P. C.
, and Tranquillo
, R. T.
, 2001
, “Neuronal Contact Guidance in Magnetically Aligned Fibrin Gels: Effect of Variation in Gel Mechano-Structural Properties
,” Biomaterials
, 22
(10
), pp. 1065
–1075
.29.
Streuli
, C.
, 1999
, “Extracellular Matrix Remodelling and Cellular Differentiation
,” Curr. Opin. Cell Biol.
, 11
(5
), pp. 634
–640
.30.
Thubrikar, M. J., 1990, The Aortic Valve, CRC Press, Boca Raton.
31.
Vesely
, I.
, and Noseworthy
, R.
, 1992
, “Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,” J. Biomech.
, 25
(1
), pp. 101
–113
.32.
Thubrikar
, M. J.
, Aouad
, J.
, and Nolan
, S. P.
, 1986
, “Comparison of the in vivo and in vitro Mechanical Properties of Aortic Valve Leaflets
,” J. Thorac. Cardiovasc. Surg.
, 92
(1
), pp. 29
–36
.33.
de Hart, J., 2002, “Fluid-Structure Interaction in the Aortic Heart Valve: A Three-Dimensional Computational Analysis,” Ph.D. thesis, Technische Universiteit Eindhoven.
34.
Clark
, R. E.
, and Finke´
, E. H.
, 1974
, “Scanning and Light Microscopy of Human Aortic Leaflets in Stressed and Relaxed States
,” J. Thorac. Cardiovasc. Surg.
, 67
(5
), pp. 792
–804
.35.
Sacks
, M. S.
, Smith
, D. B.
, and Hiester
, E. D.
, 1997
, “A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,” Ann. Biomed. Eng.
, 25
(4
), pp. 678
–689
.36.
Billiar
, K. L.
, and Sacks
, M. S.
, 2000
, “Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,” J. Biomech. Eng.
, 122
(1
), pp. 23
–30
.37.
Billiar
, K. L.
, and Sacks
, M. S.
, 1997
, “A Method to Quantify Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,” J. Biomech.
, 30
(7
), pp. 753
–756
.38.
Scott
, M. J.
, and Vesely
, I.
, 1995
, “Aortic Valve Cusp Microstructure: The Role of Elastin
,” Ann. Thorac. Surg.
, 60
(2
), pp. S391–S394
S391–S394
.39.
Scott
, M. J.
, and Vesely
, I.
, 1996
, “Morphology of Porcine Aortic Valve Cusp Elastin
,” J. Heart Valve Dis.
, 5
(5
), pp. 464
–471
.40.
Lee
, T. C.
, Midura
, R. J.
, Hascall
, V. C.
, and Vesely
, I.
, 2001
, “The Effect of Elastin Damage on the Mechanics of the Aortic Valve
,” J. Biomech.
, 34
(2
), pp. 203
–210
.41.
de Hart
, J.
, Peters
, G. W. M.
, Schreurs
, P. J. G.
, and Baaijens
, F. P. T.
, 2000
, “A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Valve
,” J. Biomech.
, 33
(9
), pp. 1079
–1088
.42.
Vesely
, I.
, 1996
, “Reconstruction of Loads in the Fibrosa and Ventricularis of Porcine Aortic Valves
,” ASAIO J.
, 42
(5
), pp. M739–M746
M739–M746
.43.
Carver
, W.
, Nagpal
, M. L.
, Nachtigal
, M.
, Borg
, T. K.
, and Terracio
, L.
, 1991
, “Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,” Circ. Res.
, 69
(1
), pp. 116
–122
.44.
Lee
, A. A.
, Delhaas
, T.
, McCulloch
, A. D.
, and Villarreal
, F. J.
, 1999
, “Differential Responses of Adult Cardiac Fibroblasts to in vitro Biaxial Strain Patterns
,” J. Mol. Cell. Cardiol.
, 31
(10
), pp. 1833
–1843
.45.
Villarreal
, F. J.
, and Dillmann
, W. H.
, 1992
, “Cardiac Hypertrophy-Induced Changes in mRNA Levels for TGF-Beta 1, Fibronectin, and Collagen
,” Am. J. Physiol.
, 262
(6
), pp. H1861–H1866
H1861–H1866
.46.
Doillon
, C. J.
, Dunn
, M. G.
, Bender
, E.
, and Silver
, F. H.
, 1985
, “Collagen Fiber Formation in Repair Tissue: Development of Strength and Toughness
,” Coll. Relat. Res.
, 5
(6
), pp. 481
–492
.Copyright © 2003
by ASME
You do not currently have access to this content.