In order to function in vivo, tissue engineered blood vessels (TEBVs) must encumber pulsatile blood flow and withstand hemodynamic pressures for long periods of time. To date TEBV mechanical assessment has typically relied on single time point burst and/or uniaxial tensile testing to gauge the strengths of the constructs. This study extends this analysis to include creep and stepwise stress relaxation viscoelastic testing methodologies. TEBV models exhibiting diverse mechanical behaviors as a result of different architectures ranging from reconstituted collagen gels to hybrid constructs reinforced with either untreated or glutaraldhyde-crosslinked collagen supports were evaluated after 8 and 23 days of in vitro culturing. Data were modeled using three and four-parameter linear viscoelastic mathematical representations and compared to porcine carotid arteries. While glutaraldhyde-treated hybrid TEBVs exhibited the largest overall strengths and toughness, uncrosslinked hybrid samples exhibited time-dependent behaviors most similar to native arteries. These findings emphasize the importance of viscoelastic characterization when evaluating the mechanical performance of TEBVs. Limits of testing methods and modeling systems are presented and discussed.

1.
L’Heureux
,
N.
,
Paquet
,
S.
,
Labbe
,
R.
,
Germain
,
L.
, and
Auger
,
F. A.
, 1998, “
A Completely Biological Tissue-Engineered Human Blood Vessel
,”
FASEB J.
0892-6638,
12
,
47
.
2.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbott
,
W. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
, 1999, “
Functional Arteries Grown In Vitro
,”
Science
0036-8075,
284
,
489
.
3.
Ziegler
,
T.
,
Alexander
,
R. W.
, and
Nerem
,
R. M.
, 1995, “
An Endothelial Cell-Smooth Muscle Cell Co-Culture Model for Use in the Investigation of Flow Effects on Vascular Biology
,”
Ann. Biomed. Eng.
0090-6964,
23
,
216
.
4.
Weinberg
,
C. B.
, and
Bell
,
E.
, 1986, “
A Blood Vessel Model Constructed From Collagen and Cultured Vascular Cells
,”
Science
0036-8075,
231
,
397
.
5.
Girton
,
T. S.
,
Oegema
,
T. R.
,
Grassl
,
E. D.
,
Isenberg
,
B. C.
, and
Tranquillo
,
R. T.
, 2000, “
Mechanisms of Stiffening and Strengthening in Media-Equivalents Fabricated Using glycation
,”
J. Biomech. Eng.
0148-0731,
122
,
216
.
6.
Berglund
,
J. D.
,
Mohseni
,
M. M.
,
Nerem
,
R. M.
, and
Sambanis
,
A.
, 2003, “
A Biological Hybrid Model for Collagen-Based Tissue Engineered Vascular Constructs
,”
Biomaterials
0142-9612,
24
,
1241
.
7.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
, 2000, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
28
,
351
.
8.
Seliktar
,
D.
,
Nerem
,
R. M.
, and
Galis
,
Z. S.
, 2001, “
The Role of Matrix Metalloproteinase-2 in the Remodeling of Cell-Seeded Vascular Constructs Subjected to Cyclic Strain
,”
Ann. Biomed. Eng.
0090-6964,
29
,
923
.
9.
Kanda
,
K.
,
Matsuda
,
T.
, and
Oka
,
T.
, 1993, “
In Vitro Reconstruction of Hybrid Vascular Tissue. Hierarchic and Oriented Cell Layers
,”
ASAIO J.
1058-2916,
39
,
M561
.
10.
Cheng
,
K. S.
,
Tiwari
,
A.
,
Baker
,
C. R.
,
Morris
,
R.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
, 2002, “
Impaired Carotid and Femoral Viscoelastic Properties and Elevated Intima-Media Thickness in Peripheral Vascular Disease
,”
Atherosclerosis
0021-9150,
164
,
113
.
11.
Lakhani
,
K.
,
Seifalian
,
A. M.
, and
Hardiman
,
P.
, 2002, “
Impaired Carotid Viscoelastic Properties in Women With Polycystic Ovaries
,”
Circulation
0009-7322,
106
,
81
.
12.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models-1995–2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
,
413
.
13.
Fung
,
Y. C.
, 1993,
Biomechanics. Mechanical Properties of Living Tissues
,
Springer-Verlag
, New York, pp.
222
226
.
14.
Schulze-Bauer
,
C. A.
,
Morth
,
C.
, and
Holzapfel
,
G. A.
, 2003, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
J. Biomech. Eng.
0148-0731,
125
,
395
.
15.
Nicosia
,
M. A.
,
Kasalko
,
J. S.
,
Cochran
,
R. P.
,
Einstein
,
D. R.
, and
Kunzelman
,
K. S.
, 2002, “
Biaxial Mechanical Properties of Porcine Ascending Aortic Wall
,”
J. Heart Valve Dis.
0966-8519,
11
,
680
.
16.
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1995, “
Biaxial Mechanics of Excised Canine Pulmonary Arteries
,”
Am. J. Physiol.
0002-9513,
269
,
H433
.
17.
Lu
,
X.
,
Yang
,
J.
,
Zhao
,
J. B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2003, “
Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
285
,
H1966
.
18.
Knez
,
P.
,
Nelson
,
K.
,
Hakimi
,
M.
,
Al-Haidary
,
J.
,
Schneider
,
C.
, and
Schmitz-Rixen
,
T.
, 2004, “
Rotational In Vitro Compliance Measurement of Diverse Anastomotic Configurations: A Tool for Anastomotic Engineering
,”
J. Biomech.
0021-9290,
37
,
275
.
19.
Kidson
,
I. G.
, and
Abbott
,
W. M.
, 1978, “
Low Compliance and Arterial Graft Occlusion
,”
Circulation
0009-7322,
58
,
I1
.
20.
Tiwari
,
A.
,
Salacinski
,
H.
,
Seifalian
,
A. M.
, and
Hamilton
,
G.
, 2002, “
New Prostheses for Use in Bypass Grafts With Special Emphasis on Polyurethanes
,”
Cardiovasc. Surg.
0967-2109,
10
,
191
.
You do not currently have access to this content.