The aim of refractive corneal surgery is to modify the curvature of the cornea to improve its dioptric properties. With that goal, the surgeon has to define the appropriate values of the surgical parameters in order to get the best clinical results, i.e., laser and geometric parameters such as depth and location of the incision, for each specific patient. A biomechanical study before surgery is therefore very convenient to assess quantitatively the effect of each parameter on the optical outcome. A mechanical model of the human cornea is here proposed and implemented under a finite element context to simulate the effects of some usual surgical procedures, such as photorefractive keratectomy (PRK), and limbal relaxing incisions (LRI). This model considers a nonlinear anisotropic hyperelastic behavior of the cornea that strongly depends on the physiological collagen fibril distribution. We evaluate the effect of the incision variables on the change of curvature of the cornea to correct myopia and astigmatism. The obtained results provided reasonable and useful information in the procedures analyzed. We can conclude from those results that this model reasonably approximates the corneal response to increasing pressure. We also show that tonometry measures of the IOP, underpredicts its actual value after PRK or LASIK surgery.

1.
Akimoto
,
A.
,
Shimizu
,
K.
,
Shoji
,
N.
, and
Kohara
,
M.
, 2002, “
Understimation of Intraocular Pressure in Eyes After Laser In Situ Keratomileusis
,”
Jpn. J. Ophthalmol.
0021-5155
46
, pp.
645
649
.
2.
Hanna
,
K.
,
Jouve
,
F.
,
Waring
,
G.
, and
Ciarlet
,
P.
, 1992, “
Computer simulation of arcuate keratotomy for astigmatism
,”
Refract. Corneal Surg.
1042-962X
8
(
1992
)
152
-
163
.
3.
Pinsky
,
P.
, and
Datye
,
V.
, 1991, “
A Microstructurally-Based Finite Element Model of the Incised Human Cornea
,”
J. Biomech.
0021-9290
10
, pp.
907
-
922
.
4.
Stodtmeister
,
R.
, 1998, “
Applanation Tonometry and Correction According to Corneal Thickness
,”
Acta Ophthalmol. Scand.
1395-3907
76
, pp.
319
-
324
.
5.
Bhan
,
A.
,
Browning
,
A.
,
Shah
,
S.
,
Hamilton
,
R.
,
Dave
,
D.
, and
Dua
H.
, 2002, “
Effect of Corneal Thickness in Intraocular Pressure Measurements With the Pneumotonometer, Goldmann Applanation Tonometer, and Tono-Pen
,”
Invest. Ophthalmol. Visual Sci.
0146-0404
43
, pp.
1389
-
1392
.
6.
Faucher
,
A.
,
Gregoire
,
J.
, and
Blondeau
,
P.
, 1997, “
Accuracy of Goldmann Tonometry After Refractive Surgery
,”
J. Cataract Refractive Surg.
0886-3350
23
, pp.
832
838
.
7.
Howland
,
H.
,
Rand
,
R.
, and
Lubkin
,
S.
, 1992, “
A Thin-Shell Model of the Cornea and its Application to Corneal Surgery
,”
Refract. Corneal Surg.
1042-962X
8
, pp.
183
-
186
.
8.
Bryant
,
M. R.
,
Machi
,
V.
, and
Juhasz
,
T.
, 2000, “
Mathematical Model of Picosecond Laser Keratomileusis For High Myopia
,”
ASME J. Biomech. Eng.
0148-0731
16
, pp.
155
-
162
.
9.
Djotyan
,
G. P.
,
Kurtz
,
R. M.
,
Cabrera
,
D.
, and
Juhasz
,
T.
, 2001, “
An Analytically Solvable Model For Biomechanical Response of the Cornea to Refractive Surgery
,”
J. Refract. Surg.
1081-597X
123
, pp.
440
-
445
.
10.
Huang
,
D.
,
Tang
,
M.
, and
Shekhar
,
R.
, 2003, “
Mathematical Model of the Corneal Surface Smoothing After Laser Refractive Surgery
,”
Am. J. Ophthalmol.
0002-9394
135
, pp.
267
-
278
.
11.
Yeh
,
H.-L.
,
Huang
,
T.
, and
Schachar
,
R.
, 2000, “
A Closed Shell Structured Eyeball Model With Application to Radial Keratotomy
,”
J. Biomech. Eng.
0148-0731
122
, pp.
504
510
.
12.
Vito
,
R. P.
,
Shin
,
T. J.
, and
McCarey
,
B. E.
, 1989, “
A Mechanical Model of the Cornea: The Effects of Physiological and Surgical Factors on Radial Keratotomy Surgery
,”
Refract. Corneal Surg.
1042-962X
5
(
2
), pp.
82
-
88
.
13.
Bryant
,
M.
, and
McDonnell
,
P.
, 1996, “
Constitutive Laws for Biomechanicalmodeling of Refractive Surgery
,”
J. Biomech. Eng.
0148-0731
118
, pp.
473
-
481
.
14.
Hanna
,
K. D.
,
Jouve
,
F.
,
Bercovier
,
M. H.
, and
Waring
,
G. O.
, 1989, “
Computer Simulation of Lamellar Keratectomy and Laser Myopic Keratomileusis
,”
J. Refract. Surg.
1081-597X
4
, pp.
222
231
.
15.
Hanna
,
K. D.
,
Jouve
,
F.
,
Ciarlet
,
P.
, and
Waring
,
G. O.
, 1989, “
Computer Simulation of Arcuate and Radial Incisions Involving the Corneoscleral Limbus
,”
Eye
0950-222X
3
, pp.
227
239
.
16.
Scherer
,
K.
,
Eggert
,
H.
,
Guth
,
H.
, and
Stiller
,
P.
, 2001,
Application of Simulation Techniques in Human Eye Corneal Surgery
, in
13th International Conference of Society for Medical Innovation and Technology, Berlin
.
17.
Shin
,
T. J.
,
Vito
,
R. P.
,
Johnson
,
L. W.
,
McCarey
,
B. E.
, 1997, “
The Distribution of Strain in the Human Cornea
,”
J. Biomech.
0021-9290
30
, pp.
497
503
.
18.
Velinsky
,
S.
, and
Bryant
,
M.
, 1992, “
On the Computer-Aided and Optimal Design of Keratorefractive Surgery
,”
Refract. Corneal Surg.
1042-962X,
8
, pp.
173
-
183
.
19.
Tallec
,
P. L.
,
Rahier
,
C.
, and
Kaiss
,
A.
, 1993, “
Three-Dimensional Incompressible Viscoelasticity in Large Strains: Formulation and Numerical Approximation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
109
, pp.
233
-
258
.
20.
Aghamohammadzadeh
,
H.
,
Newton
,
R. H.
, and
Meek
,
K. M.
, 2004, “
X-Ray Scattering Used to Map the Preferred Collagen Orientation in the Human Cornea and Limbus
,”
Structure (London)
0969-2126
12
, pp.
249
-
256
.
21.
Meek
,
K.
, and
Newton
.,
R.
, 1999, “
Organization of Collagen Fibrils in the Corneal Stroma in Relation to Mechanical Properties and Surgical Practice
,”
J. Refract. Surg.
1081-597X
15
, pp.
695
-
699
.
22.
Newton
,
R. H.
, and
Meek
,
K. M.
, 1998, “
The Integration of the Corneal and Limbal Fibrils in the Human Eye
,”
Biophys. J.
0006-3495
75
, pp.
2508
-
2512
.
23.
Spencer
,
A. J. M.
, 1954, “
Theory of invariants
,” in
Continuum Physics
,
Academic Press
, New York, pp.
239
-
253
.
24.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1994,
Mathematical Foundations of Elasticity
,
Dover
, New York.
25.
Simo
,
J. C.
, and
Taylor
,
R. L.
, 1985, “
Consistent tangent operators for rate-independent elastoplasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
48
, pp.
101
-
118
.
26.
Holzapfel
,
G. A.
2000,
Nonlinear Solid Mechanics
,
Wiley
, New York.
27.
Hughes
,
T. J. R.
, and
Pister
,
K. S.
, 1978, “
Consistent Linearization in Mechanics of Solids and Structures
,”
Comput. Struct.
0045-7949
8
, pp.
391
-
397
.
28.
Weiss
,
J.
,
Maker
,
B.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
135
, pp.
107
-
128
.
29.
Gardiner
,
J.
, and
Weiss
,
J.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266
21
, pp.
1098
-
1106
.
30.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2000, “
A new constitutive framework for arterial wall mechanics and a comparative study of material models
,”
J. Elast.
0374-3535
61
, pp.
1
-
48
.
31.
Hibbit, Karlsson, and Sorensen, Inc.
, 2001,
Abaqus User’s Manual, v.6.2
,
HKS Inc. Pawtucket
, RI.
32.
Munnerlyn
,
C.
,
Koons
,
S. J.
, and
Mearshall
,
J.
, 1988, “
Photorefractive Qeratectomy: A Technique For Laser Refractive Surgery
,”
J. Cataract Refractive Surg.
0886-3350
14
, pp.
46
52
.
33.
Kaliske
,
M.
, 2000, “
A Formulation of Elasticity and Viscoelasticiy For Fibre Reinforced Material at Small and Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
185
, pp.
225
-
243
.
34.
Vito
,
R. P.
, and
Carnell
,
P. H.
, 1992, “
Finite Element Based Mechanical Models of the Cornea for Pressure and Indenter Loading
,”
Refract. Corneal Surg.
1042-962X
8
, pp.
146
-
151
.
35.
Roberts
,
C.
, 2002, “
Biomechanics of the Cornea and Wavefront-Guided Laser Refractive Surgery
,”
J. Refract. Surg.
1081-597X
18
, pp.
589
-
592
.
36.
Dupps
Jr,
W. J.
, and
Roberts
,
C.
, 2001, “
Effect of Acute Biomechanical Changes on Corneal Curvature After Photokeratectomy
,”
J. Refract. Surg.
1081-597X
17
, pp.
658
-
669
.
37.
Hoeltzel
,
D. A.
,
Altman
,
P.
,
Buzard
,
K. A.
, and
Choe
,
K.
, 1992, “
Strip Extensometry For Comparison of the Mechanical Response of Bovine, Rabbit and Human Corneas
,”
J. Biomech. Eng.
0148-0731
114
, pp.
202
-
215
.
38.
Hughes
,
T J. R.
, 1987,
The Finite Element Method
.
Linear Static and Dynamic Finite Element Analysis
,
Dover
, New York.
You do not currently have access to this content.