Abstract

The identification of a three dimensional constitutive model is useful for describing the complex mechanical behavior of a nonlinear and anisotropic biological tissue such as the esophagus. The inflation tests at the fixed axial extension of 1, 1.125, and 1.25 were conducted on the muscle and mucosa layer of a porcine esophagus separately and the pressure-radius-axial force was recorded. The experimental data were fitted with the constitutive model to obtain the structure-related parameters, including the collagen amount and fiber orientation. Results showed that a bilinear strain energy function (SEF) with four parameters could fit the inflation data at an individual extension very well while a six-parameter model had to be used to capture the inflation behaviors at all three extensions simultaneously. It was found that the collagen distribution was axial preferred in both layers and the mucosa contained more collagen, which were in agreement with the findings through a pair of uniaxial tensile test in our previous study. The model was expected to be used for the prediction of stress distribution within the esophageal wall under the physiological state and provide some useful information in the clinical studies of the esophageal diseases.

1.
Lu
,
X.
, and
Gregersen
,
H.
, 2001, “
Regional Distribution of Axial Strain and Circumferential Residual Strain in the Layered Rabbit Oesophagus
,”
J. Biomech.
0021-9290,
34
, pp.
225
233
.
2.
Vanags
,
I.
,
Petersons
,
A.
,
Ose
,
V.
,
Ozolanta
,
I.
,
Kasyanov
,
V.
,
Laizans
,
J.
,
Vjaters
,
E.
,
Gardovskis
,
J.
, and
Vanags
,
A.
, 2003, “
Biomechanical Properties of Esophagus Wall Under Loading
,”
J. Biomech.
0021-9290,
36
, pp.
1237
1408
.
3.
Gregersen
,
H.
,
Lee
,
T. C.
,
Chien
,
S.
,
Skalak
,
R.
, and
Fung
,
Y. C.
, 1999, “
Strain Distribution in the Layered Wall of the Esophagus
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
442
447
.
4.
Liao
,
D.
,
Fan
,
Y.
,
Zeng
,
Y.
, and
Gregersen
,
H.
, 2003, “
Stress Distribution in the Layered Wall of the Rat Oesophagus
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
731
738
.
5.
Fan
,
Y.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2004, “
A Two-layered Mechanical Model of the Rat Esophagus. Experiment and Theory
,”
Biomed. Eng. Online
1475-925X,
3
(
1
), p.
40
.
6.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part I—Experimental Results
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
23
30
.
7.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2004, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
815
822
.
8.
Christian
,
A. J.
,
Schulze-Bauer
C. M.
,
, and
Holzapfel
,
G. A.
, 2003, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
395
406
.
9.
Fridez
,
P.
,
Zulliger
,
M.
,
Bobard
,
F.
,
Montorzi
,
G.
,
Miyazaki
,
H.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2003, “
Geometrical, Functional, and Histomorphometric Adaptation of Rat Carotid Artery in Induced Hypertension
,”
J. Biomech.
0021-9290,
36
, pp.
671
680
.
10.
Chen
,
L.
,
Yin
,
F. C. P.
, and
May-Newman
,
K.
, 2004, “
The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
244
251
.
11.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
, New York.
12.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1992, “
A Constitutive Theory for Biomembranes: Application to Epicardial Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
461
466
.
13.
Lin
,
D. H. S.
, and
Yin
,
F. C. P.
, 1998, “
A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
504
517
.
14.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
15.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and A Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
16.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
, pp.
989
1000
.
17.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
280
287
.
18.
Sacks
,
M. S.
, 2000, “
A Structural Constitutive Model for Chemically Treated Planar Tissues Under Biaxial Loading
,”
Comput. Mech.
0178-7675,
26
, pp.
243
249
.
19.
Driesen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
494
503
.
20.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Mode and Issues of Material Stability
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
264
275
.
21.
Yang
,
W.
,
Fung
,
T. C.
,
Chian
,
K. S.
, and
Chong
,
C. K.
, in press, “
Directional, Regional, and Layer Variations of Mechanical Properties of Esophageal Tissue and its Interpretation Using a Structure-Based Constitutive Model
,” ASME Journal of Biomechanical Engineering.
22.
Gregersen
,
H.
, 2003,
Biomechanics of the Gastrointestinal Tract: New Perspectives in Motility Research and Diagnostics
,
Springer-Verlag
, London.
23.
Gregersen
,
H.
,
Kassab
,
G. S.
, and
Fung
,
Y. C.
, 2000, “
The Zero-Stress State of the Gastrointestinal Tract: Biomechanical and Functional Implications
,”
Dig. Dis. Sci.
0163-2116,
45
, pp.
2271
2281
.
24.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
, New York.
25.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
, 1986, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
0021-9290,
19
, pp.
27
37
.
26.
Beck
,
J. V.
, and
Arnold
,
K. F.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley
, New York.
27.
Driessen
,
M. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
329
336
.
You do not currently have access to this content.