Cryogen spray cooling (CSC) protects the epidermis from unintended heating during cutaneous laser surgery. The present work investigated the time-dependent flow characteristics of cryogen sprays and correspondent thermal dynamics at the surface of a human tissue phantom. First, a numerical analysis was carried out to evaluate an epoxy block substrate as a human tissue phantom. Next, the velocity and diameter of cryogen droplets were measured simultaneously and correlated with surface temperature of the human tissue phantom during CSC. Finally, velocity and diameter measurements were used to compute the spray number, mass, and kinetic energy fluxes, and temperature measurements were used to compute the surface heat flux. Numerical modeling showed that the thermal response of our phantom was qualitatively similar to that of human stratum corneum and epidermis; quantitatively, thermal responses differed. A simple transformation to map the temperature response of the phantom to that of tissue was derived. Despite the relatively short spurt durations (10ms, 30ms, and 50ms), cryogen delivery is mostly a steady state process with initial and final fluid transients mainly due to the valve dynamics. Thermal transients (16ms) are longer than fluid transients (4ms) due to the low thermal diffusivity of human tissues; steady states are comparable in duration (10ms, 30ms, and 50ms) although there is an inherent thermal delay (12ms). Steady state temperatures are the lowest surface temperatures experienced by the substrate, independent of spurt duration; hence, longer spurt durations result in larger exposures of the tissue surface to the same lower, steady state temperature as in shorter spurts. Temperatures in human tissue during CSC for the spray system and parameters used herein are estimated to be 19°C at the stratum corneum surface and >0°C across the epidermis.

1.
Nelson
,
J. S.
,
Milner
,
T. E.
,
Anvari
,
B.
,
Tanenbaum
,
B. S.
,
Kimel
,
S.
,
Svaasand
,
L. O.
, and
Jacques
,
S. L.
, 1995, “
Dynamic Epidermal Cooling During Pulsed-Laser Treatment of Port-Wine Stain—A New Methodology With Preliminary Clinical Evaluation
,”
Arch. Dermatol.
0003-987X,
131
, pp.
695
700
.
2.
Nelson
,
J. S.
,
Milner
,
T. E.
,
Anvari
,
B.
,
Tanenbaum
,
S.
,
Svaasand
,
L. O.
, and
Kimel
,
S.
, 1996, “
Dynamic Epidermal Cooling in Conjunction With Laser-Induced Photothermolysis of Port Wine Stain Blood Vessels
,”
Lasers Surg. Med.
0196-8092,
19
, pp.
224
229
.
3.
Aguilar
,
G.
,
Majaron
,
B.
,
Pope
,
K.
,
Svaasand
,
L. O.
,
Lavernia
,
E. J.
, and
Nelson
,
J. S.
, 2001, “
Influence of Nozzle-To-Skin Distance in Cryogen Spray Cooling for Dermatologic Laser Surgery
,”
Lasers Surg. Med.
0196-8092,
28
, pp.
113
120
.
4.
Karapetian
,
E.
,
Aguilar
,
G.
,
Kimel
,
S.
,
Lavernia
,
E. J.
, and
Nelson
,
J. S.
, 2003, “
Effects of Mass Flow Rate and Droplet Velocity on Surface Heat Flux During Cryogen Spray Cooling
,”
Phys. Med. Biol.
0031-9155,
48
, pp.
N1
N6
.
5.
Pikkula
,
B. M.
,
Tunnell
,
J. W.
,
Chang
,
D. W.
, and
Anvari
,
B.
, 2004, “
Effects of Droplet Velocity, Diameter, and Film Height on Heat Removal During Cryogen Spray Cooling
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1131
1140
.
6.
Franco
,
W.
,
Liu
,
J.
,
Wang
,
G. X.
,
Nelson
,
J. S.
, and
Aguilar
,
G.
, 2005, “
Radial and Temporal Variations in Surface Heat Transfer During Cryogen Spray Cooling
,”
Phys. Med. Biol.
0031-9155,
50
, pp.
387
397
.
7.
Franco
,
W.
,
Liu
,
J.
,
Romero-Méndez
,
R.
,
Jia
,
W.
,
Nelson
,
J. S.
, and
Aguilar
,
G.
, 2007, “
Extent of Lateral Epidermal Protection Afforded by a Cryogen Spray Against Laser Irradiation
,”
Lasers Surg. Med.
0196-8092,
39
, pp.
414
421
.
8.
Hsieh
,
S. S.
, and
Tsai
,
H. H.
, 2006, “
Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling
,”
Arch. Dermatol. Res.
0340-3696,
298
, pp.
82
95
.
9.
Jia
,
W.
,
Choi
,
B.
,
Franco
,
W.
,
Lotfi
,
J.
,
Aguilar
,
G.
, and
Nelson
,
J. S.
, 2007, “
Treatment of Cutaneous Vascular Lesions Using Multiple- Intermittent Cryogen Spurts and Two-Wavelength Laser Pulses: Numerical and Animal Studies
,”
Lasers Surg. Med.
0196-8092,
39
, pp.
494
503
.
10.
Aguilar
,
G.
,
Diaz
,
S. H.
,
Lavernia
,
E. J.
, and
Nelson
,
J. S.
, 2002, “
Cryogen Spray Cooling Efficiency: Improvement of Port Wine Stain Laser Therapy Through Muttiple-Intermittent Cryogen Spurts and Laser Pulses
,”
Lasers Surg. Med.
0196-8092,
31
, pp.
27
35
.
11.
Anvari
,
B.
,
Tanenbaum
,
B. S.
,
Hoffman
,
W.
,
Said
,
S.
,
Milner
,
T. E.
,
Liaw
,
L. H. L.
, and
Nelson
,
J. S.
, 1997, “
Nd:YAG Laser Irradiation in Conjunction With Cryogen Spray Cooling Induces Deep and Spatially Selective Photocoagulation in Animal Models
,”
Phys. Med. Biol.
0031-9155,
42
, pp.
265
282
.
12.
Tate
,
R. W.
, 1982,
Some Problems Associated With The Accurate Representation Of Droplet Size Distributions
,
Proceedings of the 2nd Iclass
.
13.
Jia
,
W.
,
Aguilar
,
G.
,
Verkruysse
,
W.
,
Franco
,
W.
, and
Nelson
,
J. S.
, 2006, “
Improvement of Port Wine Stain Laser Therapy by Skin Preheating Prior to Cryogen Spray Cooling: A Numerical Simulation
,”
Lasers Surg. Med.
0196-8092,
38
, pp.
155
162
.
14.
Majaron
,
B.
,
Kimel
,
S.
,
Verkryusse
,
W.
,
Aguilar
,
G.
,
Pope
,
K.
,
Svaasand
,
L. O.
,
Lavernia
,
E. J.
, and
Nelson
,
J. S.
, 2001, “
Cryogen Spray Cooling in Laser Dermatology: Effects of Ambient Humidity and Frost Formation
,”
Lasers Surg. Med.
0196-8092,
28
, pp.
469
476
.
15.
Franco
,
W.
,
Liu
,
J.
, and
Aguilar
,
G.
, 2005, “
Interaction of Cryogen Spray With Human Skin Under Vacuum Pressures
,” in
Fluid Structure Interaction and Moving Boundary Problems
,
S.
Chakrabari
,
S.
Hernandez
, and
C. A.
Brebia
, eds.,
Wessex Institute of Technology
,
Southampton, UK
, pp.
153
162
.
16.
Roisman
,
I. V.
, and
Tropea
,
C.
, 2001, “
Flux Measurements in Sprays Using Phase Doppler Techniques
,”
Atomization Sprays
1044-5110,
11
, pp.
667
669
.
17.
Jia
,
W.
,
Aguilar
,
G.
,
Wang
,
G. X.
, and
Nelson
,
J. S.
, 2004, “
Heat-Transfer Dynamics During Cryogen Spray Cooling of Substrate at Different Initial Temperatures
,”
Phys. Med. Biol.
0031-9155,
49
, pp.
5295
5308
.
18.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Fudamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
19.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, Jr.
, 1985,
Inverse Heat Conduction: III Posed Problems
,
Wiley
,
New York
.
20.
Jacques
,
S. L.
,
Nelson
,
J. S.
,
Wright
,
W. H.
, and
Milner
,
T. E.
, 1993, “
Pulsed Photothermal Radiometry of Port-Wine-Stain Lesions
,”
Appl. Opt.
0003-6935,
32
, pp.
2439
2446
.
21.
Caspers
,
P. J.
,
Lucassen
,
G. W.
,
Bruining
,
H. A.
, and
Puppels
,
G. J.
, 2000, “
Automated Depth-Scanning Confocal Raman Microspectrometer for Rapid In Vivo Determination of Water Concentration Profiles in Human Skin
,”
J. Raman Spectrosc.
0377-0486,
31
, pp.
813
818
.
22.
Aguilar
,
G.
,
Majaron
,
B.
,
Karapetian
,
E.
,
Lavernia
,
E. J.
, and
Nelson
,
J. S.
, 2003, “
Experimental Study of Cryogen Spray Properties for Application in Dermatologic Laser Surgery
,”
IEEE Trans. Biomed. Eng.
0018-9294,
50
, pp.
863
869
.
23.
Aguilar
,
G.
,
Wang
,
G. X.
, and
Nelson
,
J. S.
, 2003, “
Dynamic Behavior of Cryogen Spray Cooling: Effects of Spurt Duration and Spray Distance
,”
Lasers Surg. Med.
0196-8092,
32
, pp.
152
159
.
24.
Aguilar
,
G.
,
Wang
,
G. X.
, and
Nelson
,
J. S.
, 2003, “
Effect of Spurt Duration on the Heat Transfer Dynamics During Cryogen Spray Cooling
,”
Phys. Med. Biol.
0031-9155,
48
, pp.
2169
2181
.
25.
Tunnell
,
J. W.
,
Torres
,
J. H.
, and
Anvari
,
B.
, 2002, “
Methodology for Estimation of Time-Dependent Surface Heat Flux Due to Cryogen Spray Cooling
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
19
33
.
You do not currently have access to this content.