Accurate fluid mechanics models are important tools for predicting the flow field in the carotid artery bifurcation and for understanding the relationship between hemodynamics and the initiation and progression of atherosclerosis. Clinical imaging modalities can be used to obtain geometry and blood flow data for developing subject-specific human carotid artery bifurcation models. We developed subject-specific computational fluid dynamics models of the human carotid bifurcation from magnetic resonance (MR) geometry data and phase contrast MR velocity data measured in vivo. Two simulations were conducted with identical geometry, flow rates, and fluid parameters: (1) Simulation 1 used in vivo measured velocity distributions as time-varying boundary conditions and (2) Simulation 2 used idealized fully-developed velocity profiles as boundary conditions. The position and extent of negative axial velocity regions (NAVRs) vary between the two simulations at any given point in time, and these regions vary temporally within each simulation. The combination of inlet velocity boundary conditions, geometry, and flow waveforms influences NAVRs. In particular, the combination of flow division and the location of the velocity peak with respect to individual carotid geometry landmarks (bifurcation apex position and the departure angle of the internal carotid) influences the size and location of these reversed flow zones. Average axial wall shear stress (WSS) distributions are qualitatively similar for the two simulations; however, instantaneous WSS values vary with the choice of velocity boundary conditions. By developing subject-specific simulations from in vivo measured geometry and flow data and varying the velocity boundary conditions in otherwise identical models, we isolated the effects of measured versus idealized velocity distributions on blood flow patterns. Choice of velocity distributions at boundary conditions is shown to influence pathophysiologically relevant flow patterns in the human carotid bifurcation. Although mean WSS distributions are qualitatively similar for measured and idealized inlet boundary conditions, instantaneous NAVRs differ and warrant imposing in vivo velocity boundary conditions in computational simulations. A simulation based on in vivo measured velocity distributions is preferred for modeling hemodynamics in subject-specific carotid artery bifurcation models when studying atherosclerosis initiation and development.

1.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
293
302
.
2.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
, 1982, “
Steady Flow in a Model of the Human Carotid Bifurcation. Part I—Flow Visualization
,”
J. Biomech.
0021-9290,
15
, pp.
349
362
.
3.
Balasubramanian
,
K.
, 1979, “
An Experimental Investigation of Steady Flow at an Arterial Bifurcation
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
4.
Ku
,
D. N.
, 1983, “
Hemodynamics and Atherogenesis at the Human Carotid Bifurcation
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
5.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2004, “
Effect of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3-D Fluid-Structure Interactions (FSI) Models
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
363
370
.
6.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
483
497
.
7.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Holdsworth
,
D. W.
, and
Ethier
,
C. R.
, 1999, “
Accuracy of Computational Hemodynamics in Complex Arterial Geometries Reconstructed From Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
32
41
.
8.
Moore
,
J. A.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1998, “
Computational Blood Flow Modeling: Errors Associated With Reconstructing Finite Element Models From Magnetic Resonance Images
,”
J. Biomech.
0021-9290,
31
, pp.
179
184
.
9.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
, 2000, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Artery Bifurcation
,”
J. Biomech.
0021-9290,
33
, pp.
975
984
.
10.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
132
141
.
11.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 1998, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
0741-5214,
27
, pp.
143
156
.
12.
Glor
,
F. P.
,
Ariff
,
B.
,
Hughes
,
A. D.
,
Verdonck
,
P. R.
,
Barratt
,
D. C.
,
Augst
,
A. D.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
, 2004, “
Influence of Head Position on Carotid Hemodynamics in Young Adults
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
287
, pp.
H1670
H1681
.
13.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully Developed Flow?
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
371
379
.
14.
Kichenassamy
,
S.
,
Kumar
,
A.
,
Olver
,
P.
,
Tannenbaum
,
A.
, and
Yezzi
,
T.
, Jr.
, 1996, “
Conformal Curvature Flows: From Phase Transitions to Active Vision
,”
Arch. Ration. Mech. Anal.
0003-9527,
134
, pp.
275
301
.
15.
Caro
,
C. G.
,
Dumoulin
,
C. L.
,
Graham
,
J. M. R.
,
Parker
,
K. H.
, and
Souza
,
S. P.
, 1992, “
Secondary Flow in the Human Carotid Artery Imaged by MR Angiography
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
147
149
.
16.
Costello
,
J. R.
, 2004, “
The Effect of Material Properties and Hemodynamics on Healing of Vascular Grafts in Baboons
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
17.
Womersley
,
J. R.
, 1955, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol. (London)
0022-3751,
127
, pp.
553
563
.
18.
Hale
,
J. F.
,
McDonald
,
D. A.
, and
Womersley
,
J. R.
, 1955, “
Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number
,”
J. Physiol. (London)
0022-3751,
128
, pp.
629
640
.
19.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
, pp.
845
856
.
20.
Anayiotos
,
A. S.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Glagov
,
S.
, and
Zarins
,
C. K.
, 1994, “
Shear Stress at a Compliant Model of the Human Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
98
106
.
21.
Thomas
,
J. B.
,
Antiga
,
L.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Hanagan Steinman
,
D. A.
,
Spence
,
J. D.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2005, “
Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis
,”
Stroke
0039-2499,
36
, pp.
2450
2456
.
22.
Long
,
A.
,
Xu
,
X. Y.
,
Bourne
,
M.
, and
Griffith
,
T. M.
, 2000, “
Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated From MRI Data
,”
Magn. Reson. Med.
0740-3194,
43
, pp.
565
576
.
You do not currently have access to this content.