Soft hydrogels serving as substrates for cell attachment are used to culture many types of cells. The mechanical properties of these gels influence cell morphology, growth, and differentiation. For studies of cell growth on inhomogeneous gels, techniques by which the mechanical properties of the substrate can be measured within the proximity of a given cell are of interest. We describe an apparatus that allows the determination of local gel elasticity by measuring the response of embedded micron-sized magnetic needles to applied magnetic fields. This microscope-based four-magnet apparatus can apply both force and torque on the microneedles. The force and the torque are manipulated by changing the values of the magnetic field at the four poles of the magnet using a feedback circuit driven by LABVIEW. Using Hall probes, we have mapped out the magnetic field and field gradients produced by each pole when all the other poles are held at zero magnetic field. We have verified that superposition of these field maps allows one to obtain field maps for the case when the poles are held at arbitrary field values. This allows one to apply known fields and field gradients to a given microneedle. An imaging system is employed to measure the displacement and rotation of the needles. Polyacrylamide hydrogels of known elasticity were used to determine the relationship between the field gradient at the location of the needles and the force acting on the needles. This relationship allows the force on the microneedle to be determined from a known field gradient. This together with a measurement of the displacement of the needle in a given gel allows one to determine the stiffness (Fδ) of the gel and the elastic modulus, provided Poison’s ratio is known. Using this method, the stiffness and the modulus of elasticity of type-I collagen gels were found to be 2.64±0.05nNμm and 284.6±5.9Pa, respectively. This apparatus is presently being employed to track the mechanical stiffness of the DNA-cross-linked hydrogels, developed by our group, whose mechanical properties can be varied on demand by adding or removing cross-linker strands. Thus a system that can be utilized to track the local properties of soft media as a function of time with minimum mechanical disturbance in the presence of cells is presented.

1.
Lo
,
C. M.
,
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y.
, 2000, “
Cell Movement is Guided by the Rigidity of the Substrate
,”
Biophys. J.
0006-3495,
79
(
1
), pp.
144
152
.
2.
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y. L.
, 2000, “
Substrate Flexibility Regulates Growth and Apoptosis of Normal but not Transformed Cells
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
279
(
5
), pp.
1345
1350
.
3.
Beningo
,
K. A.
, and
Wang
,
Y.
, 2002, “
Fc-Receptor-Mediated Phagocytosis is Regulated by Mechanical Properties of the Target
,”
J. Cell. Sci.
0021-9533,
115
(
4
), pp.
849
856
.
4.
Pelham
,
R. J.
, Jr.
, and
Wang
,
Y.
, 1997, “
Cell Locomotion and Focal Adhesions are Regulated by Substrate Flexibility
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
25
), pp.
13661
13665
.
5.
Flanagan
,
L. A.
,
Marg
,
B.
,
Osterfield
,
M.
, and
Janmey
,
P. A.
, 2002, “
Neurite Branching on Deformable Substrates
,”
NeuroReport
0959-4965,
13
(
18
), pp.
2411
2415
.
6.
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
, 1996, “
Cell Migration: A Physically Integrated Molecular Process
,”
Cell
0092-8674,
84
(
3
), pp.
359
369
.
7.
Horkay
,
F.
, and
Zrinyi
,
M.
, 1982, “
Studies on the Mechanical and Swelling Behavior of Polymer Networks Based on the Scaling Concept. 4. Extension of the Scaling Approach to Gels Swollen to Equilibrium in a Diluent of Arbitrary Activity
,”
Macromolecules
0024-9297,
15
(
5
), pp.
1306
1310
.
8.
Zhang
,
X.
,
Hu
,
Z.
, and
Li
,
Y.
, 1998, “
Rubber Elasticity of Polyacrylamide Gels in High Network Concentration
,”
Polymer
0032-3861,
39
(
13
), pp.
2783
2788
.
9.
Wong
,
J. Y.
,
Velasco
,
A.
,
Rajagopalan
,
P.
, and
Pham
,
Q.
, 1999, “
Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels
,”
J. Cell. Sci.
0021-9533,
112
, pp.
1908
1913
.
10.
Lee
,
J.
, 1994, “
Traction Forces Generated by Locomoting Keratocytes
,”
J. Cell Biol.
0021-9525,
127
(
6
), pp.
1957
1964
.
11.
Radmacher
,
M.
,
Tillamnn
,
R. W.
,
Fritz
,
M.
, and
Gaub
,
H. E.
, 1992, “
From Molecules to Cells: Imaging Soft Samples With the Atomic Force Microscope
,”
Science
0036-8075,
257
(
5078
), pp.
1900
1905
.
12.
Radmacher
,
M.
,
Fritz
,
M.
, and
Hansma
,
P. K.
, 1995, “
Imaging Soft Samples With the Atomic Force Microscope: Gelatin in Water and Propanol
,”
Biophys. J.
0006-3495,
69
(
1
), p.
264
.
13.
Yanai
,
M.
,
Butler
,
J. P.
,
Suzuki
,
T.
,
Kanda
,
A.
,
Kurachi
,
M.
,
Tashiro
,
H.
, and
Sasaki
,
H.
, 1999, “
Intracellular Elasticity and Viscosity in the Body, Leading, and Trailing Regions of Locomoting Neutrophils
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
277
(
3
), pp.
432
440
.
14.
Yamada
,
S.
,
Wirtz
,
D.
, and
Kuo
,
S. C.
, 2000, “
Mechanics of Living Cells Measured by Laser Tracking Microrheology
,”
Biophys. J.
0006-3495,
78
(
4
), pp.
1736
1747
.
15.
Bausch
,
A. R.
,
Ziemann
,
F.
,
Boulbitch
,
A. A.
,
Jacobson
,
K.
, and
Sackmann
,
E.
, 1998, “
Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry
,”
Biophys. J.
0006-3495,
75
(
4
), pp.
2038
2049
.
16.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
, 1993, “
Mechanotransduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
0036-8075,
260
(
5111
), pp.
1124
1127
.
17.
Yurke
,
B.
,
Lin
,
D. C.
, and
Langrana
,
N. A.
, 2006, “
Use of DNA Nanodevices in Modulating the Mechanical Properties of Polyacrylamide Gels
,”
DNA Computing: 11th International Workshop on DNA Computing
, DNA11,
London, ON, Canada
, Jun. 6–9, 2005, Revised Selected Papers.
18.
Lin
,
D. C.
,
Yurke
,
B.
, and
Langrana
,
N. A.
, 2004, “
Mechanical Properties of a Reversible, DNA-Crosslinked Polyacrylamide Hydrogel
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
104
110
.
19.
Lin
,
D. C.
,
Yurke
,
B.
, and
Langrana
,
N.
, 2005, “
Inducing Reversible Stiffness Changes in DNA-Crosslinked Gels
,”
J. Mater. Res.
0884-2914,
20
(
6
), pp.
1456
1464
.
20.
Lin
,
D. C.
,
Yurke
,
B.
, and
Langrana
,
N. A.
, 2005, “
Use of Rigid Spherical Inclusions in Young’s Moduli Determination: Application to DNA-Crosslinked Gels
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
571
579
.
21.
Gosse
,
C.
, and
Croquette
,
V.
, 2002, “
Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level
,”
Biophys. J.
0006-3495,
82
(
6
), pp.
3314
3329
.
22.
Amblard
,
F.
,
Yurke
,
B.
,
Pargellis
,
A.
, and
Leibler
,
S.
, 1996, “
A Magnetic Manipulator for Studying Local Rheology and Micromechanical Properties of Biological Systems
,”
Rev. Sci. Instrum.
0034-6748,
67
, pp.
818
827
.
23.
Skomski
,
R.
, and
Coey
,
J. M. D.
, 1999,
Permanent Magnetism
,
Institute of Physics
,
Philadelphia, PA
.
24.
de Vries
,
A. H. B.
,
Krenn
,
B. E.
,
van Driel
,
R.
, and
Kanger
,
J. S.
, 2005, “
Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells
,”
Biophys. J.
0006-3495,
88
(
3
), pp.
2137
2144
.
25.
Knapp
,
D. M.
,
Barocas
,
V. H.
,
Moon
,
A. G.
,
Yoo
,
K.
,
Petzold
,
L. R.
, and
Tranquillo
,
R. T.
, 1997, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheol.
0148-6055,
41
, pp.
971
993
.
26.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
, 2006, “
Solvent Control of Crack Dynamics in a Reversible Hydrogel
,”
Nature Mater.
1476-1122,
5
(
7
), pp.
552
555
.
27.
Chiarelli
,
P.
, and
De Rossi
,
D.
, 1992, “
Modelling and Mechanical Characterization of Thin Fibers of Contractile Polymer Hydrogels
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
3
(
3
), pp.
396
417
.
28.
Georges
,
P. C.
,
Miller
,
W. J.
,
Meaney
,
D. F.
,
Sawyer
,
E. S.
, and
Janmey
,
P. A.
, 2006, “
Matrices With Compliance Comparable to that of Brain Tissue Select Neuronal Over Glial Growth in Mixed Cortical Cultures
,”
Biophys. J.
0006-3495,
90
(
8
), pp.
3012
3018
.
29.
Hoyt
,
S. L.
, 1954,
ASME Handbook: Metals Properties
,
McGraw-Hill
,
New York
.
30.
Pedersen
,
J. A.
, and
Swartz
,
M. A.
, 2005, “
Mechanobiology in the Third Dimension
,”
Ann. Biomed. Eng.
0090-6964,
33
(
11
), pp.
1469
1490
.
31.
Peppas
,
N. A.
, and
Merrill
,
E. W.
, 1977, “
Crosslinked Poly (Vinyl Alcohol) Hydrogels as Swollen Elastic Networks
,”
J. Appl. Polym. Sci.
0021-8995,
21
(
7
), pp.
1763
1770
.
32.
Anseth
,
K. S.
,
Bowman
,
C. N.
, and
Brannon-Peppas
,
L.
, 1996, “
Mechanical Properties of Hydrogels and Their Experimental Determination
,”
Biomaterials
0142-9612,
17
(
17
), pp.
1647
1657
.
33.
Leung
,
L. Y.
,
Tian
,
D.
,
Brangwynne
,
C. P.
,
Weitz
,
D. A.
, and
Tschumperlin
,
D. J.
, 2007, “
A New Microrheometric Approach Reveals Individual and Cooperative Roles for TGF-{Beta} 1 and IL-1 {Beta} in Fibroblast-Mediated Stiffening of Collagen Gels
,”
FASEB J.
0892-6638,
21
(
9
), pp.
2064
2073
.
You do not currently have access to this content.