The absorption of moderately and highly soluble vapors into the walls of the conducting airways was previously shown to be a transient process over the timescale of an inhalation cycle. However, a boundary condition to predict the transient wall absorption of vapors in CFD simulations does not exist. The objective of this study was to develop and test a boundary condition that can be used to predict the transient absorption of vapors in CFD simulations of transport in the respiratory airways. To develop the boundary condition, an analytical expression for the concentration of an absorbed vapor in an air-mucus-tissue-blood (AMTB) model of the respiratory wall was developed for transient and variable air-phase concentrations. Based on the analytical expression, a flux boundary condition was developed at the air-mucus interface as a function of the far-field air-phase concentration. The new transient boundary condition was then implemented to predict absorption in a realistic model of the extrathoracic nasal airways through the larynx (nasal-laryngeal geometry). The results of the AMTB wall model verified that absorption was highly time dependent over the timescale of an inhalation cycle (approximately 1–2 s). At 1 s, transient conditions resulted in approximately 2–3 times more uptake in tissue and 20–25 times less uptake in blood than steady state conditions for both acetaldehyde and benzene. Application of this boundary condition to computational fluid dynamics simulations of the nasal-laryngeal geometry showed, as expected, that transient absorption significantly affected total deposition fractions in the mucus, tissue, and blood. Moreover, transient absorption was also shown to significantly affect the local deposition patterns of acetaldehyde and benzene. In conclusion, it is recommended that future analyses of vapors in the conducting airways consider time-dependent wall absorption based on the transient flux boundary condition developed in this study. Alternatively, a steady state absorption condition may be applied in conjunction with correction factors determined from the AMTB wall model.

1.
Chang
,
J. C. F.
,
Gross
,
E. A.
,
Swenberg
,
J. A.
, and
Barrow
,
C. S.
, 1983, “
Nasal Cavity Deposition, Histopathology, and Cell Proliferation After Single or Repeated Formaldehyde Exposures in B6C3F1 Mice and F-344 Rats
,”
Toxicol. Appl. Pharmacol.
0041-008X,
68
, pp.
161
176
.
2.
Cohen Hubal
,
E. A.
,
Schlosser
,
P. M.
,
Conolly
,
R. B.
, and
Kimbell
,
J. S.
, 1997, “
Comparison of Inhaled Formaldehyde Dosimetry Predictions With DNA-Protein Cross-Link Measurements in the Rat Nasal Passages
,”
Toxicol. Appl. Pharmacol.
0041-008X,
143
, pp.
47
55
.
3.
Kimbell
,
J. S.
,
Overton
,
J. H.
,
Subramaniam
,
R. P.
,
Schlosser
,
P. M.
,
Morgan
,
K. T.
,
Conolly
,
R. B.
, and
Miller
,
F. J.
, 2001, “
Dosimetry Modeling of Inhaled Formaldehyde: Binning Nasal Flux Predictions for Quantitative Risk Assessment
,”
Toxicol. Sci.
1096-6080,
64
(
1
), pp.
111
121
.
4.
Castleman
,
W. L.
,
Tyler
,
W. S.
, and
Dungworth
,
D. L.
, 1977, “
Lesions in Respiratory Bronchioles and Conducting Airways of Monkeys Exposed to Ambient Levels of Ozone
,”
Exp. Mol. Pathol.
0014-4800,
26
(
3
), pp.
384
400
.
5.
Chang
,
L.
,
Miller
,
F. J.
,
Ultman
,
J.
,
Huang
,
Y.
,
Stockstill
,
B. L.
,
Grose
,
E.
,
Graham
,
J. A.
,
Ospital
,
J. J.
, and
Crapo
,
J. D.
, 1991, “
Alveolar Epithelial Cell Injuries by Subchronic Exposure to Low Concentrations of Ozone Correlate With Cumulative Exposure
,”
Toxicol. Appl. Pharmacol.
0041-008X,
109
(
2
), pp.
219
234
.
6.
Anderson
,
J. C.
,
Babb
,
A. L.
, and
Hlastala
,
M. P.
, 2003, “
Modeling Soluble Gas Exchange in the Airways and Alveoli
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1402
1422
.
7.
Aharonson
,
E. F.
,
Menkes
,
H.
,
Gurtner
,
G.
,
Swift
,
D. L.
, and
Proctor
,
D. F.
, 1974, “
Effecs of Respiratory Airflow Rate on Removal of Soluble Vapors by the Nose
,”
J. Appl. Physiol.
8750-7587,
37
, pp.
654
657
.
8.
Cohen Hubal
,
E. A.
,
Fedkiw
,
P. S.
, and
Kimbell
,
J. S.
, 1996, “
Mass-Transport Models to Predict Toxicity of Inhaled Gases in the Upper Respiratory Tract
,”
J. Appl. Physiol.
8750-7587,
80
(
4
), pp.
1415
1427
.
9.
Scherer
,
P. W.
,
Keyhani
,
K.
, and
Mozell
,
M. M.
, 1994, “
Nasal Dosimetry Modeling for Humans
,”
Inhal. Toxicol.
,
6
, pp.
85
97
.
10.
Cohen Hubal
,
E. A.
,
Kimbell
,
J. S.
, and
Fedkiw
,
P. S.
, 1996, “
Incorporation of Nasal-Lining Mass-Transfer Resistance Into a CFD Model for Prediction of Ozone Dosimetry in the Upper Respiratory Tract
,”
Inhalation Toxicol.
0895-8378,
8
, pp.
831
857
.
11.
Keyhani
,
K.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1997, “
A Numerical Model of Nasal Odorant Transport for the Analysis of Human Olfocation
,”
J. Theor. Biol.
0022-5193,
186
, pp.
279
301
.
12.
Taylor
,
A. B.
,
Borhan
,
A.
, and
Ultman
,
J. S.
, 2007, “
Three-Dimensional Simulations of Reactive Gas Uptake in Single Airway Bifurcations
,”
Ann. Biomed. Eng.
0090-6964,
35
(
2
), pp.
235
249
.
13.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2003, “
Species Heat and Mass Transfer in a Human Upper Airway Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
25
), pp.
4755
4768
.
14.
Shi
,
H.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2006, “
Laminar Airflow and Nanoparticle or Vapor Deposition in a Human Nasal Cavity Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
697
706
.
15.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2006, “
Transport and Uptake of MTBE and Ethanol Vapors in a Human Upper Airway Model
,”
Inhalation Toxicol.
0895-8378,
18
, pp.
169
184
.
16.
Zhao
,
K.
,
Scherer
,
P. W.
,
Hajiloo
,
S. A.
, and
Dalton
,
P.
, 2004, “
Effects of Anatomy on Human Nasal Air Flow and Odorant Transport Patterns: Implications for Olfaction
,”
Chem. Senses
0379-864X,
29
(
5
), pp.
365
379
.
17.
Frederick
,
C. B.
,
Bush
,
M. L.
,
Lomax
,
L. G.
,
Black
,
K. A.
,
Finch
,
L.
,
Kimbell
,
J. S.
,
Morgan
,
K. T.
,
Subramaniam
,
R. P.
,
Morris
,
J. B.
, and
Ultman
,
J. S.
, 1998, “
Application of a Hybrid Computational Fluid Dynamics and Physiologically Based Inhalation Model for Interspecies Dosimetry Extrapolation of Acidic Vapors in the Upper Airways
,”
Toxicol. Appl. Pharmacol.
0041-008X,
152
(
1
), pp.
211
231
.
18.
Tian
,
G.
, and
Longest
,
P. W.
, 2010, “
Transient Absorption of Inhaled Vapors Into a Multilayer Mucus-Tissue-Blood System
,”
Ann. Biomed. Eng.
0090-6964,
38
(
2
), pp.
517
536
.
19.
ICRP
, 1994,
Human Respiratory Tract Model for Radiological Protection
,
Elsevier Science
,
New York
.
20.
Xi
,
J.
, and
Longest
,
P. W.
, 2009, “
Characterization of Submicrometer Aerosol Deposition in Extrathoracic Airways During Nasal Exhalation
,”
Aerosol Sci. Technol.
0278-6826,
43
, pp.
808
827
.
21.
Guilmette
,
R. A.
,
Wicks
,
J. D.
, and
Wolff
,
R. K.
, 1989, “
Morphometry of Human Nasal Airways In Vivo Using Magnetic Resonance Imaging
,”
J. Aerosol Med.
,
2
(
4
), pp.
365
377
.
22.
EPA
, 1994, “
Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry
,” EPA/600/8–90/0066F, Washington, DC.
23.
ATSDR
, 2007,
Toxicological Profile for Acetaldehyde (Update)
,
U.S. Department of Public Health and Human Services, Public Health Service
,
Atlanta, GA
.
24.
Talhout
,
R.
,
Opperhuizen
,
A.
, and
van Amsterdam
,
J. G. C.
, 2007, “
Role of Acetaldehyde in Tobacco Smoke Addiction
,”
Eur. Neuropsychopharmacol.
0924-977X,
17
, pp.
627
636
.
25.
ATSDR
, 2007,
Toxicological Profile for Benzene (Update)
,
U.S. Department of Public Health and Human Services, Public Health Service
,
Atlanta, GA
.
26.
Ozisik
,
M. N.
, 1980,
Heat Conduction
,
Wiley
,
New York
.
27.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1996,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge
.
28.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
,
La Cañada, CA
.
29.
Xi
,
J.
, and
Longest
,
P. W.
, 2007, “
Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway
,”
Ann. Biomed. Eng.
0090-6964,
35
(
4
), pp.
560
581
.
30.
Xi
,
J.
, and
Longest
,
P. W.
, 2008, “
Effects of Oral Airway Geometry Characteristics on the Diffusional Deposition of Inhaled Nanoparticles
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
011008
.
31.
Longest
,
P. W.
, and
Xi
,
J.
, 2007, “
Computational Investigation of Particle Inertia Effects on Submicron Aerosol Deposition in the Respiratory Tract
,”
J. Aerosol Sci.
0021-8502,
38
(
1
), pp.
111
130
.
33.
34.
George
,
S. C.
,
Babb
,
A. L.
,
Deffebach
,
M. E.
, and
Hlastala
,
M. P.
, 1996, “
Diffusion of Nonelectrolytes in the Canine Trachea: Effect of Thigh Junction
,”
J. Appl. Physiol.
8750-7587,
80
, pp.
1687
1695
.
35.
Hlastala
,
M. P.
, and
Robertson
,
H. T.
, 1998,
Complexity in Structure and Function of the Lung
, Informa Health Care,
Marcel Dekker, Inc.
,
New York, NY
.
36.
Karch
,
S. B.
, and
Peat
,
M.
, 2007,
Drug Abuse Handbook
,
CRC
,
Boca Raton, FL
.
37.
McClellan
,
R. O.
, and
Henderson
,
R. F.
, 1995,
Concepts in Inhalation Toxicology
,
Taylor & Francis
,
London
.
You do not currently have access to this content.