The purpose of this study is to develop a 3D patient-specific finite element model (FEM) of the cornea and sclera to compare predicted and in vivo refractive outcomes and to estimate the corneal elastic property changes associated with each procedure. Both eyes of a patient who underwent laser-assisted in situ keratomileusis (LASIK) for myopic astigmatism were modeled. Pre- and postoperative Scheimpflug anterior and posterior corneal elevation maps were imported into a 3D corneo-scleral FEM with an unrestrained limbus. Preoperative corneal hyperelastic properties were chosen to account for meridional anisotropy. Inverse FEM was used to determine the undeformed corneal state that produced <0.1% error in anterior elevation between simulated and in vivo preoperative geometries. Case-specific 3D aspheric ablation profiles were simulated, and corneal topography and spherical aberration were compared at clinical intraocular pressure. The magnitude of elastic weakening of the residual corneal bed required to maximize the agreement with clinical axial power was calculated and compared with the changes in ocular response analyzer (ORA) measurements. The models produced curvature maps and spherical aberrations equivalent to in vivo measurements. For the preoperative property values used in this study, predicted elastic weakening with LASIK was as high as 55% for a radially uniform model of residual corneal weakening and 65% at the point of maximum ablation in a spatially varying model of weakening. Reductions in ORA variables were also observed. A patient-specific FEM of corneal refractive surgery is presented, which allows the estimation of surgically induced changes in corneal elastic properties. Significant elastic weakening after LASIK was required to replicate clinical topographic outcomes in this two-eye pilot study.

1.
Solomon
,
K. D.
,
Fernández de Castro
,
L. E.
,
Sandoval
,
H. P.
,
Biber
,
J. M.
,
Groat
,
B.
,
Neff
,
K. D.
,
Ying
,
M. S.
,
French
,
J. W.
,
Donnenfeld
,
E. D.
,
Lindstrom
,
R. L.
, and
Joint LASIK Study Task Force
, 2009, “
LASIK World Literature Review: Quality of Life and Patient Satisfaction
,”
Ophthalmology
0161-6420,
116
(
4
), pp.
691
701
.
2.
Kosaki
,
R.
,
Maeda
,
N.
,
Hayashi
,
H.
,
Fujikado
,
T.
, and
Okamoto
,
S.
, 2009, “
Effect of NIDEK Optimized Aspheric Transition Zone Ablation Profile on Higher Order Aberrations During LASIK for Myopia
,”
J. Refract. Surg.
1081-597X,
25
(
4
), pp.
331
338
.
3.
Randleman
,
J. B.
,
White
,
A. J.
, Jr.
,
Lynn
,
M. J.
,
Hu
,
M. H.
, and
Stulting
,
R. D.
, 2009, “
Incidence, Outcomes, and Risk Factors for Retreatment After Wavefront-Optimized Ablations With PRK and LASIK
,”
J. Refract. Surg.
1081-597X,
25
(
3
), pp.
273
276
.
4.
Netto
,
M. V.
,
Dupps
,
W. J.
, and
Wilson
,
S. E.
, 2006, “
Wavefront-Guided Ablation: Evidence for Efficacy Compared to Traditional Ablation
,”
Am. J. Ophthalmol.
0002-9394,
141
(
2
), pp.
360
368
.
5.
Schallhorn
,
S. C.
,
Farjo
,
A. A.
,
Huang
,
D.
,
Boxer Wachler
,
B. S.
,
Trattler
,
W. B.
,
Tanzer
,
D. J.
,
Majmudar
,
P. A.
, and
Sugar
,
A.
, 2008, “
Wavefront-Guided LASIK for the Correction of Primary Myopia and Astigmatism: A Report by the American Academy of Ophthalmology
,”
Ophthalmology
0161-6420,
115
(
7
), pp.
1249
1261
.
6.
Cano
,
D.
,
Barbero
,
S.
, and
Marcos
,
S.
, 2004, “
Comparison of Real and Computer-Simulated Outcomes of LASIK Refractive Surgery
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
21
(
6
), pp.
926
936
.
7.
Dupps
,
W. J.
, and
Roberts
,
C.
, 2001, “
Effect of Acute Biomechanical Changes on Corneal Curvature After Photokeratectomy
,”
J. Refract. Surg.
1081-597X,
17
, pp.
658
669
.
8.
Roberts
,
C.
, 2002, “
Biomechanics of the Cornea and Wavefront-Guided Laser Refractive Surgery
,”
J. Refract. Surg.
1081-597X,
18
, pp.
S589
S592
.
9.
Dorronsoro
,
C.
,
Cano
,
D.
,
Merayo-Lloves
,
J.
, and
Marcos
,
S.
, 2006, “
Experiments on PMMA Models to Predict the Impact of Corneal Refractive Surgery on Corneal Shape
,”
Opt. Express
1094-4087,
14
(
13
), pp.
6142
56
.
10.
Marcos
,
S.
,
Cano
,
D.
, and
Barbero
,
S.
, 2003, “
Increase in Corneal Asphericity After Standard Laser In Situ Keratomileusis for Myopia Is Not Inherent to the Munnerlyn Algorithm
,”
J. Refract. Surg.
1081-597X,
19
(
5
), pp.
S592
S596
.
11.
Potgieter
,
F. J.
,
Roberts
,
C.
,
Cox
,
I. G.
,
Mahmoud
,
A. M.
,
Herderick
,
E. E.
,
Roetz
,
M.
, and
Steenkamp
,
W.
, 2005, “
Prediction of Flap Response
,”
J. Cataract Refractive Surg.
0886-3350,
31
(
1
), pp.
106
114
.
12.
Krueger
,
R. R.
, and
Dupps
,
W. J.
, 2007, “
Biomechanical Effects of Femtosecond and Microkeratome-Based Flap Creation: Prospective Contralateral Examination of Two Patients
,”
J. Refract. Surg.
1081-597X,
23
(
8
), pp.
800
807
.
13.
Sinha Roy
,
A.
, and
Dupps
,
W. J.
, Jr.
, 2009, “
Effects of Altered Corneal Stiffness on Native and Postoperative LASIK Corneal Biomechanical Behavior: A Whole-Eye Finite Element Analysis
,”
J. Refract. Surg.
1081-597X,
25
(
10
), pp.
875
887
.
14.
Alastrué
,
V.
,
Calvo
,
B.
,
Peña
,
E.
, and
Doblaré
,
M.
, 2006, “
Biomechanical Modeling of Refractive Corneal Surgery
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
150
160
.
15.
Deenadayalu
,
C.
,
Mobasher
,
B.
,
Rajan
,
S. D.
, and
Hall
,
G. W.
, 2006, “
Refractive Change Induced by the LASIK Flap in a Biomechanical Finite Element Model
,”
J. Refract. Surg.
1081-597X,
22
(
3
), pp.
286
292
.
16.
Pandolfi
,
A.
, and
Holzapfel
,
G. A.
, 2008, “
Three-Dimensional Modeling and Computational Analysis of the Human Cornea Considering Distributed Collagen Fibril Orientations
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
6
), p.
061006
.
17.
Navarro
,
R.
,
Palos
,
F.
,
Lanchares
,
E.
,
Calvo
,
B.
, and
Cristóbal
,
J. A.
, 2009, “
Lower- and Higher-Order Aberrations Predicted by an Optomechanical Model of Arcuate Keratotomy for Astigmatism
,”
J. Cataract Refractive Surg.
0886-3350,
35
(
1
), pp.
158
165
.
18.
Munnerlyn
,
C. R.
,
Koons
,
S. J.
, and
Marshall
,
J.
, 1988, “
Photorefractive Keratectomy: A Technique for Laser Refractive Surgery
,”
J. Cataract Refractive Surg.
0886-3350,
14
, pp.
46
52
.
19.
Mrochen
,
M.
,
Donitzky
,
C.
,
Wüllner
,
C.
, and
Löffler
,
J.
, 2004, “
Wavefront-Optimized Ablation Profiles: Theoretical Background
,”
J. Cataract Refractive Surg.
0886-3350,
30
(
4
), pp.
775
785
.
20.
Koller
,
T.
,
Iseli
,
H. P.
,
Hafezi
,
F.
,
Mrochen
,
M.
, and
Seiler
,
T.
, 2006, “
Q-factor Customized Ablation Profile for the Correction of Myopic Astigmatism
,”
J. Cataract Refractive Surg.
0886-3350,
32
(
4
), pp.
584
589
.
21.
Śródka
,
W.
, and
Iskander
,
D. R.
, 2008, “
Optically Inspired Biomechanical Model of the Human Eyeball
,”
J. Biomed. Opt.
1083-3668,
13
(
4
), p.
044034
.
22.
Amini
,
R.
, and
Barocas
,
V. H.
, 2009 “
Anterior Chamber Angle Opening During Corneoscleral Indentation: The Mechanism of Whole Eye Globe Deformation and the Importance of the Limbus
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
50
, pp.
5288
5294
.
23.
Boyce
,
B. L.
,
Grazier
,
J. M.
,
Jones
,
R. E.
, and
Nguyen
,
T. D.
, 2008, “
Full-field Deformation of Bovine Cornea Under Constrained Inflation Conditions
,”
Biomaterials
0142-9612,
29
(
28
), pp.
3896
3904
.
24.
Liu
,
J.
, and
Roberts
,
C. J.
, 2005, “
Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurement: Quantitative Analysis
,”
J. Cataract Refractive Surg.
0886-3350,
31
(
1
), pp.
146
155
.
25.
Pepose
,
J. S.
,
Feigenbaum
,
S. K.
,
Qazi
,
M. A.
,
Sanderson
,
J. P.
, and
Roberts
,
C. J.
, 2007, “
Changes in Corneal Biomechanics and Intraocular Pressure Following LASIK Using Static, Dynamic, and Noncontact Tonometry
,”
Am. J. Ophthalmol.
0002-9394,
143
(
1
), pp.
39
47
.
26.
Kirwan
,
C.
, and
O'Keefe
,
M.
, 2008, “
Measurement of Intraocular Pressure in LASIK and LASEK Patients Using the Reichert Ocular Response Analyzer and Goldmann Applanation Tonometry
,”
J. Refract. Surg.
1081-597X,
24
(
4
), pp.
366
370
.
27.
Bayraktar
,
S.
, and
Bayraktar
,
Z.
, 2005, “
Central Corneal Thickness and Intraocular Pressure Relationship in Eyes With and Without Previous LASIK: Comparison of Goldmann Applanation Tonometer With Pneumatonometer
,”
Eur. J. Ophthalmol.
1120-6721,
15
(
1
), pp.
81
88
.
28.
Kaufmann
,
C.
,
Bachmann
,
L. M.
, and
Thiel
,
M. A.
, 2003, “
Intraocular Pressure Measurements Using Dynamic Contour Tonometry After Laser In Situ Keratomileusis
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
44
(
9
), pp.
3790
3794
.
29.
Elsheikh
,
A.
,
Brown
,
M.
,
Alhasso
,
D.
,
Rama
,
P.
,
Campanelli
,
M.
, and
Garway-Heath
,
D.
, 2008, “
Experimental Assessment of Corneal Anisotropy
,”
J. Refract. Surg.
1081-597X,
24
(
2
), pp.
178
187
.
30.
Dupps
,
W. J.
, Jr.
,
Netto
,
M. V.
,
Herekar
,
S.
, and
Krueger
,
R. R.
, 2007, “
Surface Wave Elastometry of the Cornea in Porcine and Human Donor Eyes
,”
J. Refract. Surg.
1081-597X,
23
(
1
), pp.
66
75
.
31.
Thornton
,
I. L.
,
Dupps
,
W. J.
,
Roy
,
A. S.
, and
Krueger
,
R. R.
, 2009, “
Biomechanical Effects of Intraocular Pressure Elevation on Optic Nerve/Lamina Cribrosa Before and After Peripapillary Scleral Collagen Cross-Linking
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
50
(
3
), pp.
1227
1233
.
32.
Sarver
,
E. J.
, 2006, “
Calculation of Corneal Spherical Aberration for Aspheric IOL Selection
,”
Refractive Surgery 2006: The Times They Are A-Changin, American Academy of Ophthalmology
.
33.
Qazi
,
M. A.
,
Sanderson
,
J. P.
,
Mahmoud
,
A. M.
,
Yoon
,
E. Y.
,
Roberts
,
C. J.
, and
Pepose
,
J. S.
, 2009, “
Postoperative Changes in Intraocular Pressure and Corneal Biomechanical Metrics Laser In Situ Keratomileusis Versus Laser-Assisted Subepithelial Keratectomy
,”
J. Cataract Refractive Surg.
0886-3350,
35
(
10
), pp.
1774
1788
.
34.
Kotecha
,
A.
,
Elsheikh
,
A.
,
Roberts
,
C. R.
,
Zhu
,
H.
, and
Garway-Heath
,
D. F.
, 2006, “
Corneal Thickness- and Age-Related Biomechanical Properties of the Cornea Measured With the Ocular Response Analyzer
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
47
(
12
), pp.
5337
5347
.
35.
Shah
,
S.
,
Laiquzzaman
,
M.
,
Yeung
,
I.
,
Pan
,
X.
, and
Roberts
,
C.
, 2009, “
The Use of the Ocular Response Analyser to Determine Corneal Hysteresis in Eyes Before and After Excimer Laser Refractive Surgery
,”
Contact Lens & Anterior Eye
,
32
(
3
), pp.
123
128
.
36.
Ortiz
,
D.
,
Piñero
,
D.
,
Shabayek
,
M. H.
,
Arnalich-Montiel
,
F.
, and
Alió
,
J. L.
, 2007, “
Corneal Biomechanical Properties in Normal, Post-Laser In Situ Keratomileusis, and Keratoconic Eyes
,”
J. Cataract Refractive Surg.
0886-3350,
33
(
8
), pp.
1371
1375
.
37.
Kirwan
,
C.
, and
O’Keefe
,
M.
, 2008, “
Corneal Hysteresis Using the Reichert Ocular Response Analyser: Findings Pre- and Post-LASIK and LASEK
,”
Acta Ophthalmologica
,
86
(
2
), pp.
215
218
.
38.
Dupps
,
W. J.
, 2007, “
Hysteresis: New Mechanospeak for the Ophthalmologist
,”
J. Cataract Refractive Surg.
0886-3350,
33
(
9
), pp.
1499
1501
.
39.
Glass
,
D. H.
,
Roberts
,
C. J.
,
Litsky
,
A. S.
, and
Weber
,
P. A.
, 2008, “
A Viscoelastic Biomechanical Model of the Cornea Describing the Effect of Viscosity and Elasticity on Hysteresis
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
49
(
9
), pp.
3919
3926
.
40.
de Medeiros
,
F. W.
,
Sinha-Roy
,
A.
,
Alves
,
M. R.
,
Wilson
,
S. E.
, and
Dupps
,
W. J.
, Jr.
, 2010, “
Differences in the Early Biomechanical Effects of Hyperopic and Myopic Laser in situ Keratomileusis
,”
J. Cataract Refractive Surg.
0886-3350,
36
(
6
), pp.
947
953
.
41.
Dupps
,
W. J.
, Jr.
, and
Wilson
,
S. E.
, 2006, “
Biomechanics and Wound Healing in the Cornea
,”
Exp. Eye Res.
0014-4835,
83
(
4
), pp.
709
720
.
42.
Schmack
,
I.
,
Dawson
,
D. G.
,
McCarey
,
B. E.
,
Waring
,
G. O.
, III
,
Grossniklaus
,
H. E.
, and
Edelhauser
,
H. F.
, 2005, “
Cohesive Tensile Strength of Human LASIK Wounds With Histologic, Ultrastructural, and Clinical Correlations
,”
J. Refract. Surg.
1081-597X,
21
(
5
), pp.
433
45
.
43.
Ford
,
M.
,
Dupps
,
W. J.
,
Huprikar
,
N.
,
Lin
,
R.
, and
Rollins
,
A. M.
, 2006, “
OCT Elastography by Pressure-Induced Optical Feature Flow. Progress in Biomedical Optics and Imaging
,”
Proceedings of SPIE
, Paper No. 6138OP.
You do not currently have access to this content.