Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal’s hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.

References

1.
Nessler
,
J. A.
,
Timoszyk
,
W. K.
,
Merlo
,
M.
,
Emken
,
J. L.
,
Minakata
,
K.
,
Roy
,
R. R.
,
de Leon
,
R. D.
,
Edgerton
,
V. R.
, and
Reinkensmeyer
,
D. J.
, 2005, “
A Robotic Device for Studying Rodent Locomotion after Spinal Cord Injury
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
13
(
4
), pp.
497
506
.
2.
Nessler
,
J. A.
,
Minakata
,
K.
,
Sharp
,
K.
, and
Reinkensmeyer
,
D. J.
, 2007, “
Robot Assisted Hindlimb Extension Increases the Probability of Swing Initiation During Treadmill Walking by Spinal Cord Contused Rats
,”
J. Neurosci. Meth.
,
159
(
1
), pp.
66
77
.
3.
Cha
,
J.
,
Heng
,
C.
,
Reinkensmeyer
,
D. J.
,
Roy
,
R. R.
,
Edgerton
,
V. R.
, and
de Leon
,
R. D.
, 2007, “
Locomotor Ability in Spinal Rats Is Dependent on the Amount of Activity Imposed on the Hindlimbs During Treadmill Training
,”
J. Neurotrauma
,
24
(
6
), pp.
1000
1012
.
4.
de Leon
,
R. D.
,
Kubasak
,
M. D.
,
Phelps
,
P. E.
,
Timoszyk
,
W. K.
,
Reinkensmeyer
,
D. J.
, and
Roy
,
R. R.
, 2002, “
Using Robotics to Teach the Spinal Cord to Walk
,”
Brain Res. Rev.
,
40
, pp.
267
273
.
5.
Cai
,
L. L.
,
Fong
,
A. J.
,
Otoshi
,
C. K.
,
Liang
,
Y.
,
Burdick
,
J. W.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
, 2006, “
Implications of Assist-as-Needed Robotic Step Training after a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning
,”
J. Neurosci.
,
26
(
4
), pp.
10564
10568
.
6.
Nessler
,
J. A.
,
Reinkensmeyer
,
D. J.
,
Timoszyk
,
W.
,
Nelson
,
K.
,
Acosta
,
C.
,
Roy
,
R. R.
,
Edgerton
,
V. R.
, and
de Leon
,
R. D.
, 2003, “
The Use of a Body Weight Support Mechanism to Improve Outcome Assessment in the Spinal Cord Injured Rodent
,”
Proc. 25th annual IEEE EMBS
,
Cancun
,
Mexico
, pp.
1629
1632
.
7.
Nessler
,
J. A.
,
de Leon
,
R. D.
,
Sharp
,
K.
,
Kwak
,
E.
,
Minakata
,
K.
, and
Reinkensmeyer
,
D. J.
, 2006, “
Robotic Gait Analysis of Bipedal Treadmill Stepping by Spinal Contused Rats: Characterization of Intrinsic Recovery and Comparison with Bbb
,”
J. Neurotrauma
,
23
(
6
), pp.
882
896
.
8.
Timoszyk
,
W. K.
,
De Leon
,
R. D.
,
London
,
N.
,
Roy
,
R. R.
,
Edgerton
,
V. R.
, and
Reinkensmeyer
,
D. J.
, 2002, “
The Rat Lumbosacral Spinal Cord Adapts to Robotic Loading Applied During Stance
,”
J. Neurophys.
,
88
(
6
), pp.
3108
3117
.
9.
Timoszyk
,
W. K.
,
Nessler
,
J. A.
,
Nelson
,
K.
,
Acosta
,
C.
,
Roy
,
R. R.
,
Edgerton
,
V. R.
,
de Leon
,
R. D.
, and
Reinkensmeyer
,
D. J.
, 2005, “
Relationship between Hindlimb Loading and Stepping Ability of Spinal Transected Rats
,”
Brain Res.
,
1050
(
1–2
), pp.
180
189
.
10.
Nessler
,
J. A.
,
Minakata
,
K.
,
Sharp
,
K.
, and
Reinkensmeyer
,
D. J.
, 2005, “
Gait Activity Depends on Limb Extension and Phasing in Spinal Cord Contused Rodents: Implications for Robotic Gait Training and Assessment
,”
Proc. IEEE International Conference on Rehabilitation Robotics
,
Chicago
,
IL
, pp.
556
559
.
11.
Roy
,
R. R.
,
Zhong
,
H.
,
Siengthai
,
B.
, and
Edgerton
,
V. R.
, 2005, “
Activity-Dependent Influences Are Greater for Fibers in Rat Medial Gastrocnemius Than Tibialis Anterior Muscle
,”
Muscle Nerve
,
32
, pp.
473
482
.
12.
Roy
,
R. R.
, and
Acosta
,
L.
, 1986, “
Fiber Type and Fiber Size Changes in Selected Thigh Muscles Six Months after Low Thoracic Spinal Cord Transection in Adult Cats: Exercise Effects
,”
Exp. Neurol.
,
92
(
3
), pp.
675
685
.
13.
Hutchinson
,
K. J.
,
Linderman
,
J. K.
, and
Basso
,
D. M.
, 2001, “
Skeletal Muscle Adaptations Following Spinal Cord Contusion Injury in Rats and the Relationship to Locomotor Function: A Time Course Study
,”
J. Neurotrauma
,
18
(
10
), pp.
1075
1089
.
14.
Talmadge
,
R. J.
,
Roy
,
R. R.
,
Caiozzo
,
V. J.
, and
Edgerton
,
V. R.
, 2002, “
Mechanical Properties of Rat Soleus after Long-Term Spinal Cord Transection
,”
J. App. Physiol.
,
93
, pp.
1487
1497
.
15.
Stevens
,
J. E.
,
Min
,
L.
,
Bose
,
P.
,
O’steen
,
W. A.
,
Thompson
,
F. J.
,
Anderson
,
D. K.
, and
Vandenborne
,
K.
, 2006, “
Changes in Soleus Muscle Function and Fiber Morphology with One Week of Locomotor Training in Spinal Cord Contusion Injured Rats
,”
J. Neurotrauma
,
23
(
11
).
16.
Talmadge
,
R. J.
,
Castro
,
M. J.
,
Apple
, Jr.,
D. F.
, and
Dudley
,
G. A.
, 2002, “
Phenotypic Adaptations in Human Muscle Fibers 6 and 24 Weeks after Spinal Cord Injury
,”
J. App. Physiol.
,
92
, pp.
147
154
.
17.
Otis
,
J. S.
,
Roy
,
R. R.
,
Edgerton
,
V. R.
, and
Talmadge
,
R. J.
, 2004, “
Adaptations in Metabolic Capacity of Rat Soleus after Paralysis
,”
J. App. Physiol.
,
96
, pp.
584
596
.
18.
Harkema
,
S. J.
,
Hurley
,
S. L.
,
Patel
,
U. K.
,
Requejo
,
P. S.
,
Dobkin
,
B. H.
, and
Edgerton
,
V. R.
, 1997, “
Human Lumbosacral Spinal Cord Interprets Loading During Stepping
,”
J. Neurophys.
,
77
, pp.
797
811
.
19.
Dietz
,
V.
,
Wirz
,
M.
,
Curt
,
A.
, and
Colombo
,
G.
, 1998, “
Locomotor Pattern in Paraplegic Patients: Training Effects and Recovery of Spinal Cord Function
,”
Spinal Cord
,
36
, pp.
380
390
.
20.
Kojima
,
N.
,
Nakazawa
,
K.
, and
Yano
,
H.
, 1999, “
Effects of Limb Loading on the Lower-Limb Electromyographic Activity During Orthotic Locomotion in a Paraplegic Patient
,”
Neurosci. Lett.
,
274
, pp.
211
213
.
21.
Behrman
,
A. L.
, and
Harkema
,
S. J.
, 2000, “
Locomotor Training after Human Spinal Cord Injury: A Series of Case Studies
,”
Phys. Ther.
,
80
(
7
), pp.
688
700
.
22.
de Leon
,
R. D.
,
Hodgson
,
J. A.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
, 1998, “
Locomotor Capacity Attributable to Step Training Versus Spontaneous Recovery after Spinalization in Adult Rats
,”
J. Neurophys.
,
79
(
3
), pp.
1329
1340
.
23.
Wernig
,
A.
,
Muller
,
S.
,
Nanassay
,
A.
, and
Lagol
,
E.
, 1995, “
Laufband Therapy On”Rules of Spinal Locomotion“Is Effective in Spinal Cord Injured Persons
,”
J. Neurosci.
,
7
(
4
), pp.
823
829
.
24.
Howard
,
C. S.
,
Blakeney
,
D. C.
,
Medige
,
J.
,
Moy
,
O. J.
, and
Peimer
,
C. A.
, 2000, “
Functional Assessment in the Rat by Ground Reaction Forces
,”
J. Biomech.
,
33
, pp.
751
757
.
25.
Giszter
,
S. F.
,
Davies
,
M. R.
, and
Graziani
,
V.
, 2008, “
Coordination Strategies for Limb Forces During Weight-Bearing Locomotion in Normal Rats and in Rats Spinalized as Neonates
,”
Exp. Brain Res.
,
190
, pp.
53
69
.
26.
Webb
,
A. A.
, and
Muir
,
G. D.
, 2004, “
Course of Motor Recovery Following Ventrolateral Spinal Cord Injury in the Rat
,”
Behav. Brain Res.
,
155
, pp.
55
65
.
27.
Boyd
,
B. S.
,
Puttlitz
,
C.
,
Noble-Haeusslein
,
L. J.
,
John
,
C. M.
,
Trivedi
,
A.
, and
Topp
,
K. S.
, 2007, “
Deviations in Gait Pattern in Experimental Models of Hindlimb Paresis Shown by a Novel Pressure Mapping System
,”
J. Neurosci. Res.
,
85
, pp.
2272
2283
.
28.
Giszter
,
S. F.
,
Davies
,
M. R.
, and
Graziani
,
V.
, 2007, “
Motor Strategies Used by Rats Spinalized at Birth to Maintain Stance in Response to Imposed Perturbations
,”
J. Neurophys.
,
97
, pp.
2663
2675
.
29.
Willems
,
M. E. T.
, and
Stauber
,
W. T.
, 2009, “
The Effect of Number of Lengthening Contractions on Rat Isometric Force Production at Different Frequencies of Nerve Stimulation
,”
Acta Phsyiol.
,
196
, pp.
351
356
.
30.
Shin
,
R. H.
,
Vathana
,
T.
,
Giessler
,
G. A.
,
Friedrich
,
P. F.
,
Bishop
,
A. T.
, and
Shin
,
A. Y.
, 2008, “
Isometric Tetanic Force Measurement Method of the Tibialis Anterior in the Rat
,”
Microsurgery
,
28
, pp.
452
457
.
31.
Ochi
,
E.
,
Nakazato
,
K.
, and
Ishii
,
N.
, 2007, “
Effects of Eccentric Exercise on Joint Stiffness and Muscle Connectin (Titin) Isoform in the Rat Hindlimb
,”
J. Physiol. Sci.
,
57
(
1
), pp.
1
6
.
32.
Nessler
,
J. A.
,
Duhon
,
J.
,
Keller
,
R.
, and
Thys
,
T.
, 2010, “
Animal-Robot Interaction Force as a Measure of Locomotor Function Following Spinal Cord Injury
,”
Proc 34th annual meeting of the American Society of Biomechanics
,
Providence
,
RI
, pp.
33.
de Leon
,
R. D.
,
See
,
P. A.
, and
Chow
,
C. H. T.
, 2011, “
Differential Effects of Low Versus High Amounts of Weight Supported Treadmill Training in Spinally Transected Rats
,”
J. Neurotrauma
,
28
, pp.
1021
1033
.
34.
Macias
,
M.
,
Nowicka
,
D.
,
Czupryn
,
A.
,
Sulejczak
,
D.
,
Skup
,
M.
,
Skangiel-Kramska
,
J.
, and
Czarkowska-Bauch
,
J.
, 2009, “
Exercise-Induced Motor Improvement after Complete Spinal Cord Transection and Its Relation to Expression of Brain-Dreived Neurotrophic Factor and Presynaptic Markers
,”
BMC Neuroscience
,
10
(
144
).
35.
Galvez
,
J. A.
,
Kerdanyan
,
G.
,
Maneekobkunwong
,
S.
,
Weber
,
R.
,
Scott
,
M.
,
Harkema
,
S. J.
, and
Reinkensmeyer
,
D. J.
, 2005, “
Measuring Human Trainers’ Skill for the Design of Better Robot Control Algorithms for Gait Training after Spinal Cord Injury
,”
Proc. International Conference on Rehabilitation Robotics
,
Chicago
,
IL
, pp.
231
234
.
36.
Nessler
,
J. A.
,
Reinkensmeyer
,
D. J.
,
Timoszyk
,
W. K.
,
Nelson
,
K.
,
Acosta
,
C.
,
Roy
,
R. R.
,
Edgerton
,
V. R.
, and
de Leon
,
R. D.
, 2003, “
Use of a Body Weight Support Mechanism to Improve Outcome Assessment in the Spinal Cord Injured Rodent
,”
Proc 25th Annual IEEE EMBS
,
Cancun
,
Mexico
, pp.
1629
1632
.
37.
Basso
,
D. M.
,
Beattie
,
M. S.
, and
Bresnahan
,
J. C.
, 1995, “
A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats
,”
J. Neurotrauma
,
12
, pp.
1
21
.
38.
Liu
,
M.
,
Bose
,
P.
,
Walter
,
G. A.
,
Thompson
,
F. J.
, and
Vandenborne
,
K.
, 2008, “
A Longitudinal Study of Skeletal Muscle Following Spinal Cord Injury and Locomotor Training
,”
Spinal Cord
,
46
, pp.
488
493
.
39.
Zhang
,
S.
,
Huang
,
F.
,
Gates
,
M.
,
White
,
J.
, and
Holmberg
,
E. G.
, 2010, “
Tail Nerve Electrical Stimulation Induces Body-Weight Supported Stepping in Rats with Spinal Cord Injury
,”
J. Neurosci. Meth.
,
187
, pp.
183
189
.
You do not currently have access to this content.