Abstract

Goals of knee replacement surgery are to restore function and maximize implant longevity. To determine how well these goals are satisfied, tibial femoral kinematics and tibial contact kinematics are of interest. Tibiofemoral kinematics, which characterize function, is movement between the tibia and femur whereas tibial contact kinematics, which is relevant to implant wear, is movement of the location of contact by the femoral implant on the tibial articular surface. The purposes of this review article are to describe and critique relevant methods to guide correct implementation. For tibiofemoral kinematics, methods are categorized as those which determine (1) relative planar motions and (2) relative three-dimensional (3D) motions. Planar motions are determined by first finding anterior–posterior (A–P) positions of each femoral condyle relative to the tibia and tracking these positions during flexion. Of the lowest point (LP) and flexion facet center (FFC) methods, which are common, the lowest point method is preferred and the reasoning is explained. 3D motions are determined using the joint coordinate system (JCS) of Grood and Suntay. Previous applications of this JCS have resulted in motions which are largely in error due to “kinematic crosstalk.” Requirements for minimizing kinematic crosstalk are outlined followed by an example, which demonstrates the method for identifying a JCS that minimizes kinematic crosstalk. Although kinematic crosstalk can be minimized, the need for a JCS to determine 3D motions is questionable based on anatomical constraints, which limit varus–valgus rotation and compression–distraction translation. Methods for analyzing tibial contact kinematics are summarized and validation of methods discussed.

References

1.
Singh
,
J. A.
,
Yu
,
S.
,
Chen
,
L.
, and
Cleveland
,
J. D.
,
2019
, “
Rates of Total Joint Replacement in the United States: Future Projections to 2020-2040 Using the National Inpatient Sample
,”
J. Rheumatol.
,
46
(
9
), pp.
1134
1140
.10.3899/jrheum.170990
2.
Baker
,
P.
,
Van der Meulen
,
J.
,
Lewsey
,
J.
, and
Gregg
,
P.
,
2007
, “
The Role of Pain and Function in Determining Patient Satisfaction After Total Knee Replacement: Data From the National Joint Registry for England and Wales
,”
J. Bone Jt. Surg.
,
89-B
(
7
), pp.
893
900
.10.1302/0301-620X.89B7.19091
3.
Bourne
,
R. B.
,
Chesworth
,
B. M.
,
Davis
,
A. M.
,
Mahomed
,
N. N.
, and
Charron
,
K. D. J.
,
2010
, “
Patient Satisfaction After Total Knee Arthroplasty: Who is Satisfied and Who is Not?
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
57
63
.10.1007/s11999-009-1119-9
4.
Noble
,
P. C.
,
Conditt
,
M. A.
,
Cook
,
K. F.
, and
Mathis
,
K. B.
,
2006
, “
Patient Expectations Affect Satisfaction With Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
452
, pp.
35
43
.10.1097/01.blo.0000238825.63648.1e
5.
Hsu
,
R. W.
,
Himeno
,
S.
,
Coventry
,
M. B.
, and
Chao
,
E. Y.
,
1990
, “
Normal Axial Alignment of the Lower Extremity and Load-Bearing Distribution at the Knee
,”
Clin. Orthop. Relat. Res.
,
255
, pp.
215
227
.10.1097/00003086-199006000-00029
6.
Gu
,
Y.
,
Roth
,
J. D.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2014
, “
How Frequently Do Four Methods for Mechanically Aligning a Total Knee Arthroplasty Cause Collateral Ligament Imbalance and Change Alignment From Normal in White Patients?
,”
J. Bone Jt. Surg.
,
96
(
12
), p.
e101
.10.2106/JBJS.M.00306
7.
Gustke
,
K. A.
,
Golladay
,
G. J.
,
Roche
,
M. W.
,
Jerry
,
G. J.
,
Elson
,
L. C.
, and
Anderson
,
C. R.
,
2014
, “
Increased Satisfaction After Total Knee Replacement Using Sensor-Guided Technology
,”
Bone Jt. J.
,
96-B
(
10
), pp.
1333
1338
.10.1302/0301-620X.96B10.34068
8.
Meneghini
,
R. M.
,
Ziemba-Davis
,
M. M.
,
Lovro
,
L. R.
,
Ireland
,
P. H.
, and
Damer
,
B. M.
,
2016
, “
Can Intraoperative Sensors Determine the “Target” Ligament Balance? Early Outcomes in Total Knee Arthroplasty
,”
J. Arthroplasty
,
31
(
10
), pp.
2181
2187
.10.1016/j.arth.2016.03.046
9.
Nicholls
,
R. L.
,
Schirm
,
A. C.
,
Jeffcote
,
B. O.
, and
Kuster
,
M. S.
,
2007
, “
Tibiofemoral Force Following Total Knee Arthroplasty: Comparison of Four Prosthesis Designs In Vitro
,”
J. Orthop. Res.
,
25
(
11
), pp.
1506
1512
.10.1002/jor.20438
10.
Howell
,
S. M.
,
Kuznik
,
K.
,
Hull
,
M. L.
, and
Siston
,
R. A.
,
2008
, “
Results of an Initial Experience With Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients
,”
Orthopedics
,
31
(
9
), pp.
857
863
.10.3928/01477447-20080901-15
11.
Howell
,
S. M.
,
Papadopoulos
,
S.
,
Kuznik
,
K. T.
, and
Hull
,
M. L.
,
2013
, “
Accurate Alignment and High Function After Kinematically Aligned TKA Performed With Generic Instruments
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
21
(
10
), pp.
2271
2280
.10.1007/s00167-013-2621-x
12.
Liow
,
M. H.
,
Xia
,
Z.
,
Wong
,
M. K.
,
Tay
,
K. J.
,
Yeo
,
S. J.
, and
Chin
,
P. L.
,
2014
, “
Robot-Assisted Total Knee Arthroplasty Accurately Restores the Joint Line and Mechanical Axis. A Prospective Randomised Study
,”
J. Arthroplasty
,
29
(
12
), pp.
2373
2377
.10.1016/j.arth.2013.12.010
13.
Barrett
,
W.
,
Hoeffel
,
D.
,
Dalury
,
D.
,
Mason
,
J. B.
,
Murphy
,
J.
, and
Himden
,
S.
,
2014
, “
In-Vivo Alignment Comparing Patient Specific Instrumentation With Both Conventional and Computer Assisted Surgery (CAS) Instrumentation in Total Knee Arthroplasty
,”
J. Arthroplasty
,
29
(
2
), pp.
343
347
.10.1016/j.arth.2013.06.029
14.
Hantouly
,
A. T.
,
Ahmed
,
A. F.
,
Alzobi
,
O.
,
Toubasi
,
A.
,
Salameh
,
M.
,
Elmhiregh
,
A.
,
Hameed
,
S.
,
Ahmed
,
G. O.
,
Alvand
,
A.
, and
Al Dosari
,
M. A. A.
,
2022
, “
Mobile-Bearing Versus Fixed-Bearing Total Knee Arthroplasty: A Meta-Analysis of Randomized Controlled Trials
,”
Eur. J. Orthop. Surg. Traumatol.
,
32
(
3
), pp.
481
495
.10.1007/s00590-021-02999-x
15.
Sappey-Marinier
,
E.
,
Swan
,
J.
,
Maucort-Boulch
,
D.
,
Batailler
,
C.
,
Malatray
,
M.
,
Neyret
,
P.
,
Lustig
,
S.
, and
Servien
,
E.
,
2022
, “
No Significant Clinical and Radiological Differences Between Fixed Versus Mobile Bearing Total Knee Replacement Using the Same Semi-Constrained Implant Type: A Randomized Controlled Trial With Mean 10 Years Follow-Up
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
30
(
2
), pp.
603
611
.10.1007/s00167-020-06346-1
16.
Broberg
,
J. S.
,
Naudie
,
D. D. R.
,
Howard
,
J. L.
,
Lanting
,
B. A.
,
Vasarhelyi
,
E. M.
, and
Teeter
,
M. G.
,
2024
, “
Effect of Surgical Technique, Implant Design, and Time of Examination on Contact Kinematics: A Study of Bicruciate-Stabilized and Posterior-Stabilized Total Knee Arthroplasty
,”
J. Arthroplasty
, epub.10.1016/j.arth.2024.03.040
17.
Kersten
,
R.
,
de Vries
,
A. J.
,
van Raaij
,
J.
, and
Brouwer
,
R. W.
,
2023
, “
12-Year Clinical and Radiological Results of a Double-Blind Randomized Controlled Trial Comparing Posterior Cruciate-Retaining Versus Posterior-Stabilized Total Knee Arthroplasty
,”
Knee
,
45
, pp.
110
116
.10.1016/j.knee.2023.10.006
18.
Krumme
,
J.
,
Kankaria
,
R.
,
Vallem
,
M.
,
Cyrus
,
J.
,
Sculco
,
P.
,
Golladay
,
G.
, and
Kalore
,
N.
,
2022
, “
Comparative Analysis of Contemporary Fixed Tibial Inserts: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials
,”
Orthop. Rev.
,
14
(
4
), p.
35502
.10.52965/001c.35502
19.
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2013
, “
The Influence of Total Knee Arthroplasty Geometry on Mid-Flexion Stability: An Experimental and Finite Element Study
,”
J. Biomech.
,
46
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2013.01.025
20.
Hull
,
M. L.
,
2022
, “
Errors in Using Fixed Flexion Facet Centers to Determine Tibiofemoral Kinematics Increase Foufold for Multi-Radius Femoral Component Designs With Early Versus Late Initial Transition Angles
,”
Knee
,
35
, pp.
183
191
.10.1016/j.knee.2022.02.011
21.
Kessler
,
O.
,
Durselen
,
L.
,
Banks
,
S.
,
Mannel
,
H.
, and
Marin
,
F.
,
2007
, “
Sagittal Curvature of Total Knee Replacements Predicts In Vivo Kinematics
,”
Clin. Biomech.
,
22
(
1
), pp.
52
58
.10.1016/j.clinbiomech.2006.07.011
22.
Simileysky
,
A.
,
Ridenour
,
D.
, and
Hull
,
M. L.
,
2021
, “
Circle-Based Model to Estimate Error in Using the Lowest Points to Indicate Locations Of contact Developed by the Femoral Condyles on the Tibial Insert in Total Knee Arthroplasty by the Tibia
,”
J. Biomech.
,
120
, p.
110365
.10.1016/j.jbiomech.2021.110365
23.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
,
1997
, “
In Vivo Kinematics of Cruciate-Retaining and-Substituting Knee Arthroplasties
,”
J. Arthroplasty
,
12
(
3
), pp.
297
304
.10.1016/S0883-5403(97)90026-7
24.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Stiehl
,
J. B.
,
Walker
,
S. A.
, and
Dennis
,
K. N.
,
1998
, “
Range of Motion After Total Knee Arthroplasty The Effect of Implant Design and Weight-Bearing Conditions
,”
J. Arthroplasty
,
13
(
7
), pp.
748
752
.10.1016/S0883-5403(98)90025-0
25.
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
,
2000
, “
Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee
,”
J. Bone Jt. Surg.
,
82-B
(
8
), pp.
1189
1195
.10.1302/0301-620X.82B8.0821189
26.
Kurosawa
,
H.
,
Walker
,
P. S.
,
Abe
,
S.
,
Garg
,
A.
, and
Hunter
,
T.
,
1985
, “
Geometry and Motion of the Knee for Implant and Orthotic Design
,”
J. Biomech.
,
18
(
7
), pp.
487
499
.10.1016/0021-9290(85)90663-3
27.
Williams
,
A.
, and
Logan
,
M.
,
2004
, “
Understanding Tibio-Femoral Motion
,”
Knee
,
11
(
2
), pp.
81
88
.10.1016/j.knee.2003.12.004
28.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
29.
Hoff
,
W. A.
,
Komistek
,
R. D.
,
Dennis
,
D. A.
,
Gabriel
,
S. M.
, and
Walker
,
S. A.
,
1998
, “
Three-Dimensional Determination of Femoral-Tibial Contact Positions Under In Vivo Conditions Using Fluoroscopy
,”
Clin. Biomech.
,
13
(
7
), pp.
455
472
.10.1016/S0268-0033(98)00009-6
30.
Gray
,
H. A.
,
Guan
,
S.
,
Young
,
T. J.
,
Dowsey
,
M. M.
,
Choong
,
P. F.
, and
Pandy
,
M. G.
,
2020
, “
Comparison of Posterior-Stabilized, Cruciate-Retaining, and Medial-Stabilized Knee Implant Motion During Gait
,”
J. Orthop. Res.
,
38
(
8
), pp.
1753
1768
.10.1002/jor.24613
31.
Asano
,
T.
,
Akagi
,
M.
,
Tanaka
,
K.
,
Tamura
,
J.
, and
Nakamura
,
T.
,
2001
, “
In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique
,”
Clin. Orthop. Relat. Res.
,
388
, pp.
157
166
.10.1097/00003086-200107000-00023
32.
Freeman
,
M. A.
, and
Pinskerova
,
V.
,
2005
, “
The Movement of the Normal Tibio-Femoral Joint
,”
J. Biomech.
,
38
(
2
), pp.
197
208
.10.1016/j.jbiomech.2004.02.006
33.
McPherson
,
A.
,
Kärrholm
,
J.
,
Pinskerova
,
V.
,
Sosna
,
A.
, and
Martelli
,
S.
,
2005
, “
Imaging Knee Position Using MRI, RSA/CT and 3D Digitisation
,”
J. Biomech.
,
38
(
2
), pp.
263
268
.10.1016/j.jbiomech.2004.02.007
34.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
35.
Walker
,
P. S.
,
Heller
,
Y.
,
Yildirim
,
G.
, and
Immerman
,
I.
,
2011
, “
Reference Axes for Comparing the Motion of Knee Replacements With the Anatomic Knee
,”
Knee
,
18
(
5
), pp.
312
316
.10.1016/j.knee.2010.07.005
36.
Postolka
,
B.
,
Schutz
,
P.
,
Fucentese
,
S. F.
,
Freeman
,
M. A. R.
,
Pinskerova
,
V.
,
List
,
R.
, and
Taylor
,
W. R.
,
2020
, “
Tibio-Femoral Kinematics of the Healthy Knee Joint Throughout Complete Cycles of Gait Activities
,”
J. Biomech.
,
110
, p.
109915
.10.1016/j.jbiomech.2020.109915
37.
Tanifuji
,
O.
,
Sato
,
T.
,
Kobayashi
,
K.
,
Mochizuki
,
T.
,
Koga
,
Y.
,
Yamagiwa
,
H.
,
Omori
,
G.
, and
Endo
,
N.
,
2011
, “
Three-Dimensional In Vivo Motion Analysis of Normal Knees Using Single-Plane Fluoroscopy
,”
J. Orthop. Sci.
,
16
(
6
), pp.
710
718
.10.1007/s00776-011-0149-9
38.
Yin
,
L.
,
Chen
,
K.
,
Guo
,
L.
,
Cheng
,
L.
,
Wang
,
F.
, and
Yang
,
L.
,
2015
, “
Identifying the Functional Flexion-Extension Axis of the Knee: An in-Vivo Kinematics Study
,”
PLoS One
,
10
(
6
), p.
e0128877
.10.1371/journal.pone.0128877
39.
Banks
,
S. A.
,
Fregly
,
B. J.
,
Boniforti
,
F.
,
Reinschmidt
,
C.
, and
Romagnoli
,
S.
,
2005
, “
Comparing In Vivo Kinematics of Unicondylar and bi-Unicondylar Knee Replacements
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
13
(
7
), pp.
551
556
.10.1007/s00167-004-0565-x
40.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Walker
,
S. A.
,
Cheal
,
E. J.
, and
Stiehl
,
J. B.
,
2001
, “
Femoral Condylar Lift-Off In Vivo in Total Knee Arthroplasty
,”
J. Bone Jt. Surg.
,
83-B
(
1
), pp.
33
39
.10.1302/0301-620X.83B1.0830033
41.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
42.
Nicolet-Petersen
,
S.
,
Saiz
,
A.
,
Shelton
,
T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “
Small Differences in Tibial Contact Locations Following Kinematically Aligned TKA From the Native Contralateral Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
28
(
9
), pp.
2893
2904
.10.1007/s00167-019-05658-1
43.
Alesi
,
D.
,
Marcheggiani Muccioli
,
G. M.
,
Roberti di Sarsina
,
T.
,
Bontempi
,
M.
,
Pizza
,
N.
,
Zinno
,
R.
,
Di Paolo
,
S.
,
Zaffagnini
,
S.
, and
Bragonzoni
,
L.
,
2021
, “
In Vivo Femorotibial Kinematics of Medial-Stabilized Total Knee Arthroplasty Correlates to Post-Operative Clinical Outcomes
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
29
(
2
), pp.
491
497
.10.1007/s00167-020-05975-w
44.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
2004
, “
Design and Activity Dependence of Kinematics in Fixed and Mobile-Bearing Knee Arthroplasties
,”
J. Arthroplasty
,
19
(
7
), pp.
809
816
.10.1016/j.arth.2004.04.011
45.
Catani
,
F.
,
Innocenti
,
B.
,
Belvedere
,
C.
,
Labey
,
L.
,
Ensini
,
A.
, and
Leardini
,
A.
,
2010
, “
The Mark Coventry Award: Articular Contact Estimation in TKA Using In Vivo Kinematics and Finite Element Analysis
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
19
28
.10.1007/s11999-009-0941-4
46.
Matsuki
,
K.
,
Matsuki
,
K. O.
,
Kenmoku
,
T.
,
Yamaguchi
,
S.
,
Sasho
,
T.
, and
Banks
,
S. A.
,
2017
, “
In Vivo Kinematics of Early-Stage Osteoarthritic Knees During Pivot and Squat Activities
,”
Gait Posture
,
58
, pp.
214
219
.10.1016/j.gaitpost.2017.07.116
47.
Victor
,
J.
,
Banks
,
S.
, and
Bellemans
,
J.
,
2005
, “
Kinematics of Posterior Cruciate Ligament-Retaining and-Substituting Total Knee Arthroplasty: A Prospective Randomized Outcome Study
,”
J. Bone Jt. Surg. Br.
,
87-B
(
5
), pp.
646
655
.10.1302/0301-620X.87B5.15602
48.
Koo
,
S.
, and
Andriacchi
,
T. P.
,
2008
, “
The Knee Joint Center of Rotation is Predominantly on the Lateral Side During Normal Walking
,”
J. Biomech.
,
41
(
6
), pp.
1269
1273
.10.1016/j.jbiomech.2008.01.013
49.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2006
, “
A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints
,”
J. Biomech.
,
39
(
15
), pp.
2798
2809
.10.1016/j.jbiomech.2005.10.002
50.
Boguszewski
,
D. V.
,
Joshi
,
N. B.
,
Yang
,
P. R.
,
Markolf
,
K. L.
,
Petrigliano
,
F. A.
, and
McAllister
,
D. R.
,
2016
, “
Location of the Natural Knee Axis for Internal-External Tibial Rotation
,”
Knee
,
23
(
6
), pp.
1083
1088
.10.1016/j.knee.2015.11.003
51.
Gertzbein
,
S. D.
,
Chan
,
K. H.
,
Tile
,
M.
,
Seligman
,
J.
, and
Kapasouri
,
A.
,
1985
, “
Moire Patterns: An Accurate Technique for Determination of the Locus of the Centres of Rotation
,”
J. Biomech.
,
18
(
7
), pp.
501
509
.10.1016/0021-9290(85)90664-5
52.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1990
, “
Helical Axes of Passive Knee Joint Motions
,”
J. Biomech.
,
23
(
12
), pp.
1219
1229
.10.1016/0021-9290(90)90379-H
53.
Hull
,
M. L.
,
2020
, “
Coordinate System Requirements to Determine Motions of the Tibiofemoral Joint Free From Kinematic Crosstalk Errors
,”
J. Biomech.
,
109
, p.
109928
.10.1016/j.jbiomech.2020.109928
54.
Piazza
,
S. J.
, and
Cavanagh
,
P. R.
,
2000
, “
Measurement of the Screw-Home Motion of the Knee is Sensitive to Errors in Axis Alignment
,”
J. Biomech.
,
33
(
8
), pp.
1029
1034
.10.1016/S0021-9290(00)00056-7
55.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
56.
Pourtabib
,
J.
, and
Hull
,
M. L.
,
2023
, “
Joint Coordinate System Using Functional Axes Achieves Clinically Meaningful Kinematics of the Tibiofemoral Joint as Compared to the International Society of Biomechanics (ISB) Recommendation
,”
ASME J. Biomech. Eng.
,
145
(
5
), p.
051005
.10.1115/1.4056654
57.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.10.1016/j.arth.2004.08.005
58.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.10.1097/00003086-199305000-00033
59.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A.
,
2004
, “
Does the Femur Roll-Back With Flexion?
,”
J. Bone Jt. Surg.
,
86-B
(
6
), pp.
925
931
.10.1302/0301-620X.86B6.14589
60.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
, et al.,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion–Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
61.
Dennis
,
D.
,
Komistek
,
R.
,
Scuderi
,
G.
,
Argenson
,
J. N.
,
Insall
,
J.
,
Mahfouz
,
M.
,
Aubaniac
,
J. M.
, and
Haas
,
B.
,
2001
, “
In Vivo Three-Dimensional Determination of Kinematics for Subjects With a Normal Knee or a Unicompartmental or Total Knee Replacement
,”
J. Bone Jt. Surg.
,
83
(
2_suppl_2
), pp.
104
115
.10.2106/00004623-200100022-00008
62.
Komistek
,
R. D.
,
Dennis
,
D. A.
, and
Mahfouz
,
M.
,
2003
, “
In Vivo Fluoroscopic Analysis of the Normal Human Knee
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
69
81
.10.1097/01.blo.0000062384.79828.3b
63.
Fregly
,
B. J.
,
Rahman
,
H. A.
, and
Banks
,
S. A.
,
2005
, “
Theoretical Accuracy of Model-Based Shape Matching for Measuring Natural Knee Kinematics With Single-Plane Fluoroscopy
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
692
699
.10.1115/1.1933949
64.
Prins
,
A. H.
,
Kaptein
,
B. L.
,
Stoel
,
B. C.
,
Reiber
,
J. H. C.
, and
Valstar
,
E. R.
,
2010
, “
Detecting Femur–Insert Collisions to Improve Precision of Fluoroscopic Knee Arthroplasty Analysis
,”
J. Biomech.
,
43
(
4
), pp.
694
700
.10.1016/j.jbiomech.2009.10.023
65.
DeFrate
,
L. E.
,
Sun
,
H.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G. A.
,
2004
, “
In Vivo Tibiofemoral Contact Analysis Using 3D MRI-Based Knee Models
,”
J. Biomech.
,
37
(
10
), pp.
1499
1504
.10.1016/j.jbiomech.2004.01.012
66.
Li
,
G.
,
DeFrate
,
L. E.
,
Park
,
S. E.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2005
, “
In Vivo Articular Cartilage Contact Kinematics of the Knee: An Investigation Using Dual-Orthogonal Fluoroscopy and Magnetic Resonance Image–Based Computer Models
,”
Am. J. Sports Med.
,
33
(
1
), pp.
102
107
.10.1177/0363546504265577
67.
Li
,
G.
,
Suggs
,
J.
,
Hanson
,
G.
,
Durbhakula
,
S.
,
Johnson
,
T.
, and
Freiberg
,
A.
,
2006
, “
Three-Dimensional Tibiofemoral Articular Contact Kinematics of a Cruciate-Retaining Total Knee Arthroplasty
,”
J. Bone Jt. Surg.
,
88
(
2
), pp.
395
402
.10.2106/JBJS.D.03028
68.
Yin
,
P.
,
Li
,
J. S.
,
Kernkamp
,
W. A.
,
Tsai
,
T. Y.
,
Baek
,
S. H.
,
Hosseini
,
A.
,
Lin
,
L.
,
Tang
,
P.
, and
Li
,
G.
,
2017
, “
Analysis of in-Vivo Articular Cartilage Contact Surface of the Knee During a Step-Up Motion
,”
Clin. Biomech.
,
49
, pp.
101
106
.10.1016/j.clinbiomech.2017.09.005
69.
Zhou
,
C.
,
Zhang
,
Z.
,
Rao
,
Z.
,
Foster
,
T.
,
Bedair
,
H.
, and
Li
,
G.
,
2021
, “
Physiological Articular Contact Kinematics and Morphological Femoral Condyle Translations of the Tibiofemoral Joint
,”
J. Biomech.
,
123
, p.
110536
.10.1016/j.jbiomech.2021.110536
70.
Hoshino
,
Y.
, and
Tashman
,
S.
,
2012
, “
Internal Tibial Rotation During In Vivo, Dynamic Activity Induces Greater Sliding of Tibio-Femoral Joint Contact on the Medial Compartment
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
20
(
7
), pp.
1268
1275
.10.1007/s00167-011-1731-6
71.
Teeter
,
M. G.
,
Perry
,
K. I.
,
Yuan
,
X.
,
Howard
,
J. L.
, and
Lanting
,
B. A.
,
2018
, “
Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement
,”
J. Arthroplasty
,
33
(
3
), pp.
740
745
.10.1016/j.arth.2017.09.064
72.
Omori
,
G.
,
Onda
,
N.
,
Shimura
,
M.
,
Hayashi
,
T.
,
Sato
,
T.
, and
Koga
,
Y.
,
2009
, “
The Effect of Geometry of the Tibial Polyethylene Insert on the Tibiofemoral Contact Kinematics in Advance Medial Pivot Total Knee Arthroplasty
,”
J. Orthop. Sci.
,
14
(
6
), pp.
754
760
.10.1007/s00776-009-1402-3
73.
Ross
,
D. S.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2017
, “
Errors in Calculating Anterior–Posterior Tibial Contact Locations in Total Knee Arthroplasty Using Three-Dimensional Model to Two-Dimensional Image Registration in Radiographs: An In Vitro Study of Two Methods
,”
ASME J. Biomech. Eng.
,
139
(
12
), p.
121003
.10.1115/1.4037632
74.
Roth
,
J. D.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2017
, “
An Improved Tibial Force Sensor to Compute Contact Forces and Contact Locations In Vitro After Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
139
(
2
), p.
041001
.10.1115/1.4035471
75.
Pourtabib
,
J.
, and
Hull
,
M. L.
,
2024
, “
Significantly Better Precision with New Machine Learning versus Manual Image Registration Software in Processing Images from Single-Plane Fluoroscopy to Determine Tibiofemoral Kinematics following Total Knee Replacement
,”
Proc. Inst. Mech. Eng., Part H
,
238
(
3
), pp.
332
339
.10.1177/09544119241232271
76.
Jensen
,
A. J.
,
Flood
,
P. D. L.
,
Palm-Vlasak
,
L. S.
,
Burton
,
W. S.
,
Chevalier
,
A.
,
Rullkoetter
,
P. J.
, and
Banks
,
S. A.
,
2023
, “
Joint Track Machine Learning: An Autonomous Method of Measuring Total Knee Arthroplasty Kinematics From Single-Plane X-Ray Images
,”
J. Arthroplasty
,
38
(
10
), pp.
2068
2074
.10.1016/j.arth.2023.05.029
77.
Mahfouz
,
M. R.
,
Hoff
,
W. A.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
,
2003
, “
A Robust Method for Registration of Three-Dimensional Knee Implant Models to Two-Dimensional Fluoroscopy Images
,”
IEEE Trans. Med. Imaging
,
22
(
12
), pp.
1561
1574
.10.1109/TMI.2003.820027
78.
Elorza
,
S. P.
,
O'Donnell
,
E.
,
Nedopil
,
A.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2023
, “
Ball-in-Socket Medial Conformity With Posterior Cruciate Ligament Retention Neither Limits Internal Tibial Rotation and Knee Flexion nor Lowers Clinical Outcome Scores After Unrestricted Kinematically Aligned Total Knee Arthroplasty
,”
Int. Orthop.
,
47
(
7
), pp.
1737
1746
.10.1007/s00264-023-05834-6
You do not currently have access to this content.