Abstract

Soft biological tissues often function as highly deformable membranes in vivo and exhibit impressive mechanical behavior effectively characterized by planar biaxial testing. The Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations and boundary forces from mechanical testing to quantify material properties of soft, anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to GAIM to improve the quality and physical significance of its mechanical characterizations. We evaluated the updated GAIM method using simulated and experimental biaxial testing datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well with previously published Young's moduli of PDMS samples. It also matched the stiffness moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that the sample was mechanically anisotropic via a relative anisotropy metric produced by GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing between spatial variations in thickness and stiffness. Finally, we conducted an analysis to verify that results were independent of partitioning scheme. The success of the newly implemented constraints on GAIM suggests notable potential for applying this tool to soft tissues, particularly following the onset of pathologies that induce mechanical and structural heterogeneities.

References

1.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.10.1115/1.429624
2.
Ross
,
C.
,
Laurence
,
D.
,
Wu
,
Y.
, and
Lee
,
C. H.
,
2019
, “
Biaxial Mechanical Characterizations of Atrioventricular Heart Valves
,”
J. Vis. Exp.
, (146), p. e59170.10.3791/59170
3.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1993
, “
Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium
,”
ASME J. Biomech. Eng.
,
115
(
2
), pp.
202
205
.10.1115/1.2894122
4.
Witzenburg
,
C.
,
Raghupathy
,
R.
,
Kren
,
S. M.
,
Taylor
,
D. A.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Changes in the Rat Right Ventricle With Decellularization
,”
J. Biomech.
,
45
(
5
), pp.
842
849
.10.1016/j.jbiomech.2011.11.025
5.
Nemavhola
,
F.
,
2021
, “
Study of Biaxial Mechanical Properties of the Passive Pig Heart: Material Characterisation and Categorisation of Regional Differences
,”
Int. J. Mech. Mater. Eng.
,
16
(
1
), pp.
1
14
.10.1186/s40712-021-00128-4
6.
Lanir
,
Y.
, and
Fung
,
Y. C.
,
1974
, “
Two-Dimensional Mechanical Properties of Rabbit Skin—I. Experimental System
,”
J. Biomech.
,
7
(
1
), pp.
29
34
.10.1016/0021-9290(74)90067-0
7.
Lanir
,
Y.
, and
Fung
,
Y. C.
,
1974
, “
Two-Dimensional Mechanical Properties of Rabbit Skin—II. Experimental Results
,”
J. Biomech.
,
7
(
2
), pp.
171
182
.10.1016/0021-9290(74)90058-X
8.
Schneider
,
D. C.
,
Davidson
,
T. M.
, and
Nahum
,
A. M.
,
1984
, “
In Vitro Biaxial Stress-Strain Response of Human Skin
,”
Arch. Otolaryngol.
,
110
(
5
), pp.
329
333
.10.1001/archotol.1984.00800310053012
9.
Jiang
,
M.
,
Sridhar
,
R. L.
,
Robbins
,
A. B.
,
Freed
,
A. D.
, and
Moreno
,
M. R.
,
2021
, “
A Versatile Biaxial Testing Platform for Soft Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
114
, p.
104144
.10.1016/j.jmbbm.2020.104144
10.
Eilaghi
,
A.
,
Flanagan
,
J. G.
,
Tertinegg
,
I.
,
Simmons
,
C. A.
,
Wayne Brodland
,
G.
, and
Ross Ethier
,
C.
,
2010
, “
Biaxial Mechanical Testing of Human Sclera
,”
J. Biomech.
,
43
(
9
), pp.
1696
1701
.10.1016/j.jbiomech.2010.02.031
11.
Cruz Perez
,
B.
,
Tang
,
J.
,
Morris
,
H.
,
Palko
,
J.
,
Pan
,
X.
,
Hart
,
R.
, and
Liu
,
J.
,
2014
, “
Biaxial Mechanical Testing of Posterior Sclera Using High-Resolution Ultrasound Speckle Tracking for Strain Measurements
,”
J. Biomech.
,
47
(
5
), pp.
1151
1156
.10.1016/j.jbiomech.2013.12.009
12.
Ndlovu
,
Z.
,
Desai
,
D.
,
Pandelani
,
T.
,
Ngwangwa
,
H.
, and
Nemavhola
,
F.
,
2022
, “
Biaxial Estimation of Biomechanical Constitutive Parameters of Passive Porcine Sclera Soft Tissue
,”
Appl. Bionics Biomech.
,
2022
, pp.
1
11
.10.1155/2022/4775595
13.
Humphrey
,
J. D.
,
2002
, “
Cardiovascular Solid Mechanics—Cells, Tissues, and Organs
,” Springer, New York.
14.
Humphrey
,
J. D.
,
1998
, “
Computer Methods in Membrane Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
(
3
), pp.
171
210
.10.1080/01495739808936701
15.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2001
,
Thin Plates and Shells
,
CRC Press
, Boca Raton, FL.
16.
Demer
,
L. L.
, and
Yin
,
F. C.
,
1983
, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol.
,
339
(
1
), pp.
615
630
.10.1113/jphysiol.1983.sp014738
17.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Biaxial Mechanical Behavior of Excised Ventricular Epicardium
,”
Am. J. Physiol.
,
259
(
1
), pp.
H101
H108
.10.1152/ajpheart.1990.259.1.H101
18.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.10.1016/j.jbiomech.2005.03.003
19.
Nemavhola
,
F.
,
2017
, “
Biaxial Quantification of Passive Porcine Myocardium Elastic Properties by Region
,”
Eng. Solid Mech.
,
5
(
3
), pp.
155
166
.
20.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast. Phys. Sci. Solids
,
61
(
1
), pp.
199
246
.10.1023/A:1010917028671
21.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV. further Developments of the General Theory
,”
Philos. Trans. R. Soc., A
,
241
(
835
), pp.
379
397
.10.1098/rsta.1948.0024
22.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc., A
,
243
(
865
), pp.
251
288
.10.1098/rsta.1951.0004
23.
Treloar
,
L. R. G.
,
1948
, “
Stresses and Birefringence in Rubber Subjected to General Homogeneous Strain
,”
Proc. Phys. Soc.
,
60
(
2
), pp.
135
144
.10.1088/0959-5309/60/2/303
24.
Pearce
,
D.
,
Nemcek
,
M.
, and
Witzenburg
,
C.
,
2022
, “
Combining Unique Planar Biaxial Testing With Full-Field Thickness and Displacement Measurement for Spatial Characterization of Soft Tissues
,”
Curr. Protoc.
,
2
(
7
), p.
e493
.10.1002/cpz1.493
25.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Estimation of the Distributions of Anisotropic, Elastic Properties and Wall Stresses of Saccular Cerebral Aneurysms by Inverse Analysis
,”
Proc. R. Soc. A
,
464
(
2092
), pp.
807
825
.10.1098/rspa.2007.0332
26.
Genovese
,
K.
,
Casaletto
,
L.
,
Humphrey
,
J. D.
, and
Lu
,
J.
,
2014
, “
Digital Image Correlation-Based Point-Wise Inverse Characterization of Heterogeneous Material Properties of Gallbladder In Vitro
,”
Proc. R. Soc. A
,
470
(
2167
), p.
20140152
.10.1098/rspa.2014.0152
27.
Zhou
,
X.
, and
Lu
,
J.
,
2008
, “
Inverse Formulation for Geometrically Exact Stress Resultant Shells
,”
Int. J. Numer. Methods Eng.
,
74
(
8
), pp.
1278
1302
.10.1002/nme.2215
28.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2008
, “
Inverse Method of Stress Analysis for Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
,
7
(
6
), pp.
477
486
.10.1007/s10237-007-0110-1
29.
Davis
,
F.
,
Luo
,
Y.
,
Avril
,
S.
,
Duprey
,
A.
, and
Lu
,
J.
,
2015
, “
Pointwise Characterization of the Elastic Properties of Planar Soft Tissues: Application to Ascending Thoracic Aneurysms
,”
Biomech. Model. Mechanobiol.
,
14
(
5
), pp.
967
978
.10.1007/s10237-014-0646-9
30.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2013
, “
Robust Image Correlation Based Strain Calculator for Tissue Systems (20130022, Dr. Victor Barocas)
,” accessed Sept. 12, 2024, https://license.umn.edu/product/robust-image-correlation-based-strain-calculator-for-tissue-systems
31.
Zhou
,
B.
,
Ravindran
,
S.
,
Ferdous
,
J.
,
Kidane
,
A.
,
Sutton
,
M. A.
, and
Shazly
,
T.
,
2016
, “
Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens
,”
J. Vis. Exp.
,
2016
(
107
), p.
53625
.10.3791/53625
32.
Yang
,
J.
, and
Bhattacharya
,
K.
,
2019
, “
Augmented Lagrangian Digital Image Correlation
,”
Exp. Mech.
59
(
2
), pp.
187
205
.10.1007/s11340-018-00457-0
33.
Raghupathy
,
R.
, and
Barocas
,
V. H.
,
2010
, “
Generalized Anisotropic Inverse Mechanics for Soft Tissues
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081006
.10.1115/1.4001257
34.
Raghupathy
,
R.
,
Witzenburg
,
C.
,
Lake
,
S. P.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2011
, “
Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091011
.10.1115/1.4005170
35.
Shih
,
E. D.
,
Provenzano
,
P. P.
,
Witzenburg
,
C. M.
,
Barocas
,
V. H.
,
Grande
,
A. W.
, and
Alford
,
P. W.
,
2022
, “
Characterizing Tissue Remodeling and Mechanical Heterogeneity in Cerebral Aneurysms
,”
J. Vasc. Res.
,
59
(
1
), pp.
34
42
.10.1159/000519694
36.
Johnston
,
I. D.
,
McCluskey
,
D. K.
,
Tan
,
C. K. L.
, and
Tracey
,
M. C.
,
2014
, “
Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering
,”
J. Micromech. Microeng.
,
24
(
3
), p.
035017
.10.1088/0960-1317/24/3/035017
37.
Aurora
,
A.
,
McCarron
,
J.
,
Iannotti
,
J. P.
, and
Derwin
,
K.
,
2007
, “
Commercially Available Extracellular Matrix Materials for Rotator Cuff Repairs: State of the Art and Future Trends
,”
J. Shoulder Elb. Surg.
,
16
(
5
), pp.
S171
S178
.10.1016/j.jse.2007.03.008
38.
Derwin
,
K. A.
,
Baker
,
A. R.
,
Spragg
,
R. K.
,
Leigh
,
D. R.
, and
Iannotti
,
J. P.
,
2006
, “
Commercial Extracellular Matrix Scaffolds for Rotator Cuff Tendon Repair: Biomechanical, Biochemical, and Cellular Properties
,”
J. Bone Jt. Surg.
,
88
(
12
), pp.
2665
2672
.10.2106/JBJS.E.01307
39.
Witzenburg
,
C.
,
Dhume
,
R. Y.
,
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2016
, “
Automatic Segmentation of Mechanically Inhomogeneous Tissues Based on Deformation Gradient Jump
,”
IEEE Trans. Med. Imaging
,
35
(
1
), pp.
29
41
.10.1109/TMI.2015.2453316
40.
Jayne
,
B. A.
, and
Hunt
,
M. O.
,
1969
, “
Plane Stress and Plane Strain in Orthotropic and Anisotropic Media
,”
Wood Fiber Sci.
,
1
(
3
), pp.
236
247
.https://wfs.swst.org/index.php/wfs/article/view/1539/1539
41.
Krenk
,
S.
,
1979
, “
On the Elastic Constants of Plane Orthotropic Elasticity
,”
J. Compos. Mater
,
13
(
2
), pp.
108
116
.10.1177/002199837901300202
42.
Li
,
Y.
, and
Barbič
,
J.
,
2014
, “
Stable Orthotropic Materials
,”
SCA 2014 - Proceedings of ACM SIGGRAPH/Eurographics Symposium on Compututer Animation
, Copenhagen, Denmark, July 21–23, pp.
41
46
.https://viterbiweb.usc.edu/~jbarbic/orthotropic/LiBarbicStableOrthotropicMaterials-SCA2014.pdf
43.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
1995
, “
Anisotropic Symmetries of Linear Elasticity
,”
ASME Appl. Mech. Rev
,
48
(
5
), pp.
247
285
.10.1115/1.3005102
44.
Thomson
,
W.
,
1856
, “
XXI. Elements of a Mathematical Theory of Elasticity
,”
Philos. Trans. R. Soc. London
,
146
, pp.
481
498
.10.1098/rstl.1856.0022
45.
Makinde
,
A.
,
Thibodeau
,
L.
, and
Neale
,
K. W.
,
1992
, “
Development of an Apparatus for Biaxial Testing Using Cruciform Specimens
,”
Exp. Mech.
32
(
2
), pp.
138
144
.10.1007/BF02324725
46.
Boehler
,
J. P.
,
Demmerle
,
S.
, and
Koss
,
S.
,
1994
, “
A New Direct Biaxial Testing Machine for Anisotropic Materials
,”
Exp. Mech.
,
34
(
1
), pp.
1
9
.10.1007/BF02328435
47.
Waldman
,
S. D.
, and
Lee
,
J. M.
,
2005
, “
Effect of Sample Geometry on the Apparent Biaxial Mechanical Behaviour of Planar Connective Tissues
,”
Biomaterials
,
26
(
35
), pp.
7504
7513
.10.1016/j.biomaterials.2005.05.056
48.
Lecompte
,
D.
,
Smits
,
A.
,
Sol
,
H.
,
Vantomme
,
J.
, and
Van Hemelrijck
,
D.
,
2007
, “
Mixed Numerical–Experimental Technique for Orthotropic Parameter Identification Using Biaxial Tensile Tests on Cruciform Specimens
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1643
1656
.10.1016/j.ijsolstr.2006.06.050
49.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021004
.10.1115/1.4023503
50.
Estrada
,
J. B.
, and
Franck
,
C.
,
2015
, “
Intuitive Interface for the Quantitative Evaluation of Speckle Patterns for Use in Digital Image and Volume Correlation Techniques
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
095001
.10.1115/1.4030821
51.
Debes
,
J.
, and
Fung
,
Y.
,
1995
, “
Biaxial Mechanics of Excised Canine Pulmonary Arteries
,”
Am. J. Physiol.
,
269
(
2
), pp.
H433
H442
.10.1152/ajpheart.1995.269.2.H433
52.
Lee
,
J. M.
, and
Langdon
,
S. E.
,
1996
, “
Thickness Measurement of Soft Tissue Biomaterials: A Comparison of Five Methods
,”
J. Biomech.
,
29
(
6
), pp.
829
832
.10.1016/0021-9290(95)00121-2
53.
Murdock
,
K.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
Characterization of Mechanical Properties of Pericardium Tissue Using Planar Biaxial Tension and Flexural Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
148
156
.10.1016/j.jmbbm.2017.08.039
54.
Avril
,
S.
, and
Evans
,
S.
,
2017
,
Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics
, Vol.
573
,
Springer International Publishing
,
Cham
.
55.
Ariati
,
R.
,
Sales
,
F.
,
Souza
,
A.
,
Lima
,
R. A.
, and
Ribeiro
,
J.
,
2021
, “
Polydimethylsiloxane Composites Characterization and Its Applications: A Review
,”
Polymers (Basel)
,
13
(
23
), pp.
4258
21
.10.3390/polym13234258
56.
Long
,
R.
,
Hall
,
M. S.
,
Wu
,
M.
, and
Hui
,
C. Y.
,
2011
, “
Effects of Gel Thickness on Microscopic Indentation Measurements of Gel Modulus
,”
Biophys. J
,
101
(
3
), pp.
643
650
.10.1016/j.bpj.2011.06.049
57.
Toyjanova
,
J.
,
Bar-Kochba
,
E.
,
López-Fagundo
,
C.
,
Reichner
,
J.
,
Hoffman-Kim
,
D.
, and
Franck
,
C.
,
2014
, “
High Resolution, Large Deformation 3D Traction Force Microscopy
,”
PLoS One
,
9
(
4
), p.
e90976
.10.1371/journal.pone.0090976
58.
Beussman
,
K. M.
,
Mollica
,
M.
,
Leonard
,
A.
,
Miles
,
J.
,
Hocter
,
J.
,
Song
,
Z.
,
Stolla
,
M.
,
Han
,
S.
,
Emery
,
A.
,
Thomas
,
W.
, and
Sniadecki
,
N.
,
2023
, “
Black Dots: High-Yield Traction Force Microscopy Reveals Structural Factors Contributing to Platelet Forces
,”
Acta Biomater.
,
163
, pp.
302
311
.10.1016/j.actbio.2021.11.013
59.
Li
,
H.
,
Matsunaga
,
D.
,
Matsui
,
T.
,
Aosaki
,
H.
,
Kinoshita
,
G.
,
Inoue
,
K.
,
Doostmohammadi
,
A.
, and
Deguchi
,
S.
,
2022
, “
Wrinkle Force Microscopy: A Machine Learning Based Approach to Predict Cell Mechanics From Images
,”
Commun. Biol.
,
5
(
1
), pp.
1
3
.10.1038/s42003-022-03288-x
60.
Notbohm
,
J.
,
Napiwocki
,
B. N.
,
de Lange
,
W. J.
,
Stempien
,
A.
,
Saraswathibhatla
,
A.
,
Craven
,
R. J.
,
Salick
,
M. R.
,
Ralphe
,
J. C.
, and
Crone
,
W. C.
,
2019
, “
Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes
,”
Exp. Mech.
,
59
(
9
), pp.
1235
1248
.10.1007/s11340-019-00473-8
61.
Franck
,
C.
,
Hong
,
S.
,
Maskarinec
,
S. A.
,
Tirrell
,
D. A.
, and
Ravichandran
,
G.
,
2007
, “
Three-Dimensional Full-Field Measurements of Large Deformations in Soft Materials Using Confocal Microscopy and Digital Volume Correlation
,”
Exp. Mech.
,
47
(
3
), pp.
427
438
.10.1007/s11340-007-9037-9
62.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1–3
), pp.
1
48
.10.1023/A:1010835316564
63.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
64.
Gasparotti
,
E.
,
Vignali
,
E.
,
Quartieri
,
S.
,
Lazzeri
,
R.
, and
Celi
,
S.
,
2023
, “
Numerical Investigation on Circular and Elliptical Bulge Tests for Inverse Soft Tissue Characterization
,”
Biomech. Model. Mechanobiol.
,
22
(
5
), pp.
1697
1707
.10.1007/s10237-023-01730-5
65.
Vignali
,
E.
,
Gasparotti
,
E.
,
Capellini
,
K.
,
Fanni
,
B.
,
Landini
,
L.
,
Positano
,
V.
, and
Celi
,
S.
,
2021
, “
Modeling Biomechanical Interaction Between Soft Tissue and Soft Robotic Instruments: Importance of Constitutive Anisotropic Hyperelastic Formulations
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
224
235
.10.1177/0278364920927476
66.
Wertheim
,
M. G.
,
1847
, “
Mémoire Sur L'élasticité et la Cohésion Des Principaux Tissus du Corps Humain
,”
Ann. Chim. Phys.
,
21
, pp.
385
414
.https://archive.org/details/mmoiresurlespro00chevgoog/page/n68/mode/2up
67.
Roy
,
C. S.
,
1881
, “
The Elastic Properties of the Arterial Wall
,”
J. Physiol.
,
3
(
2
), pp.
125
159
.10.1113/jphysiol.1881.sp000088
68.
Humphrey
,
J.
,
2003
, “
Continuum Biomechanics of Soft Biological Tissues
,”
Proc. Math. Phys. Eng. Sci.
,
459
(
2029
), pp.
3
46
.10.1098/rspa.2002.1060
69.
Witzenburg
,
C.
, and
Barocas
,
V. H.
,
2016
, “
A Nonlinear Anisotropic Inverse Method for Computational Dissection of Inhomogeneous Planar Tissues
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
15
), pp.
1630
1646
.10.1080/10255842.2016.1176154
You do not currently have access to this content.