Abstract

This study develops a comprehensive framework that integrates computational fluid dynamics (CFD) and machine learning (ML) to predict milk flow behavior in lactating breasts. Utilizing CFD and other high-fidelity simulation techniques to tackle fluid flow challenges often entails significant computational resources and time investment. Artificial neural networks (ANNs) offer a promising avenue for grasping complex relationships among high-dimensional variables. This study leverages this potential to introduce an innovative data-driven approach to CFD. The initial step involved using CFD simulations to generate the necessary training and validation datasets. A machine learning pipeline was then crafted to train the ANN. Furthermore, various ANN architectures were explored, and their predictive performance was compared. The design of experiments method was also harnessed to identify the minimum number of simulations needed for precise predictions. This study underscores the synergy between CFD and ML methodologies, designated as ML-CFD. This novel integration enables a neural network to generate CFD-like results, resulting in significant savings in time and computational resources typically required for traditional CFD simulations. The models developed through this ML-CFD approach demonstrate remarkable efficiency and robustness, enabling faster exploration of milk flow behavior in individual lactating breasts compared to conventional CFD solvers.

References

1.
Azarnoosh
,
J.
, and
Hassanipour
,
F.
,
2020
, “
Fluid-Structure Interaction Modeling of Lactating Breast
,”
J. Biomech.
,
103
, p.
109640
.10.1016/j.jbiomech.2020.109640
2.
Azarnoosh
,
J.
, and
Hassanipour
,
F.
,
2021
, “
Fluid-Structure Interaction Modeling of Lactating Breast: Newtonian vs. Non-Newtonian Milk
,”
J. Biomech.
,
124
, p.
110500
.10.1016/j.jbiomech.2021.110500
3.
Kissas
,
G.
,
Yang
,
Y.
,
Hwuang
,
E.
,
Witschey
,
W. R.
,
Detre
,
J. A.
, and
Perdikaris
,
P.
,
2020
, “
Machine Learning in Cardiovascular Flows Modeling: Predicting Arterial Blood Pressure From Non-Invasive 4D Flow MRI Data Using Physics-Informed Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112623
.10.1016/j.cma.2019.112623
4.
Feiger
,
B.
,
Gounley
,
J.
,
Adler
,
D.
,
Leopold
,
J. A.
,
Draeger
,
E. W.
,
Chaudhury
,
R.
, and
Ryan
,
J.
, et al.,
2020
, “
Accelerating Massively Parallel Hemodynamic Models of Coarctation of the Aorta Using Neural Networks
,”
Sci. Rep.
,
10
(
1
), pp.
1
13
.10.1038/s41598-020-66225-0
5.
Rutkowski
,
D. R.
,
Roldán-Alzate
,
A.
, and
Johnson
,
K. M.
,
2021
, “
Enhancement of Cerebrovascular 4D Flow MRI Velocity Fields Using Machine Learning and Computational Fluid Dynamics Simulation Data
,”
Sci. Rep.
,
11
(
1
), pp.
1
11
.10.1038/s41598-021-89636-z
6.
Truong
,
P.
,
Walsh
,
E.
,
Scott
,
V. P.
,
Leff
,
M.
,
Chen
,
A.
, and
Friend
,
J.
,
2024
, “
Application of Statistical Analysis and Machine Learning to Identify Infants' Abnormal Suckling Behavior
,”
IEEE J. Transl. Eng. Health Med.
,
12
, pp.
435
447
.10.1109/JTEHM.2024.3390589
7.
Olapojoye
,
A.
,
Singh
,
A.
,
Nishi
,
E.
,
Fei
,
B.
,
Nosratinia
,
A.
, and
Hassanipour
,
F.
,
2024
, “
Infants Sucking Pattern Identification Using Machine-Learned Computational Modelling
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
, 8(3), p.
031003
.10.1115/1.4066459
8.
Li
,
Y.
,
Mache
,
M. A.
, and
Todd
,
T. A.
,
2020
, “
Automated Identification of Postural Control for Children With Autism Spectrum Disorder Using a Machine Learning Approach
,”
J. Biomech.
,
113
, p.
110073
.10.1016/j.jbiomech.2020.110073
9.
Elgersma
,
K. M.
,
Wolfson
,
J.
,
Fulkerson
,
J. A.
,
Georgieff
,
M. K.
,
Looman
,
W. S.
,
Spatz
,
D. L.
,
Shah
,
K. M.
,
Uzark
,
K.
, and
McKechnie
,
A. C.
,
2023
, “
Predictors of Human Milk Feeding and Direct Breastfeeding for Infants With Single Ventricle Congenital Heart Disease: Machine Learning Analysis of the National Pediatric Cardiology Quality Improvement Collaborative Registry
,”
J. Pediat.
,
261
, p.
113562
.10.1016/j.jpeds.2023.113562
10.
Itu
,
L.
,
Rapaka
,
S.
,
Passerini
,
T.
,
Georgescu
,
B.
,
Schwemmer
,
C.
,
Schoebinger
,
M.
,
Flohr
,
T.
,
Sharma
,
P.
, and
Comaniciu
,
D.
,
2016
, “
A Machine-Learning Approach for Computation of Fractional Flow Reserve From Coronary Computed Tomography
,”
J. Appl. Physiol.
,
121
(
1
), pp.
42
52
.10.1152/japplphysiol.00752.2015
11.
Li
,
Y.
,
Zaheri
,
S.
,
Nguyen
,
K.
,
Liu
,
L.
,
Hassanipour
,
F.
,
Pace
,
B. S.
, and
Bleris
,
L.
,
2022
, “
Machine Learning-Based Approaches for Identifying Human Blood Cells Harboring CRISPR-Mediated Fetal Chromatin Domain Ablations
,”
Sci. Rep.
,
12
(
1
), pp.
1
10
.10.1038/s41598-022-05575-3
12.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.10.1161/CIRCULATIONAHA.111.021824
13.
Hahn
,
L. D.
,
Baeumler
,
K.
, and
Hsiao
,
A.
,
2021
, “
Artificial Intelligence and Machine Learning in Aortic Disease
,”
Curr. Opin. Cardiol.
,
36
(
6
), pp.
695
703
.10.1097/HCO.0000000000000903
14.
Madani
,
A.
,
Bakhaty
,
A.
,
Kim
,
J.
,
Mubarak
,
Y.
, and
Mofrad
,
M. R. K.
,
2019
, “
Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis
,”
ASME J. Biomech. Eng.
,
141
(
8
), p.
084502
.10.1115/1.4043290
15.
Rengarajan
,
B.
,
Patnaik
,
S. S.
, and
Finol
,
E. A.
,
2021
, “
A Predictive Analysis of Wall Stress in Abdominal Aortic Aneurysms Using a Neural Network Model
,”
ASME J. Biomech. Eng.
,
143
(
12
), p.
121004
.10.1115/1.4051905
16.
Alatalo
,
D.
, and
Hassanipour
,
F.
,
2016
, “
An Experimental Study on Human Milk Viscosity
,”
ASME
Paper No. IMECE2016-68761.10.1115/IMECE2016-68761
17.
Alatalo
,
D.
, and
Hassanipour
,
F.
,
2020
, “
An Experimental Study on Human Milk Rheology: Behavior Changes From External Factors
,”
Fluids
,
5
(
2
), p.
42
.10.3390/fluids5020042
18.
Negin Mortazavi
,
S.
,
Geddes
,
D.
, and
Hassanipour
,
F.
,
2017
, “
Lactation in the Human Breast From a Fluid Dynamics Point of View
,”
ASME J. Biomech. Eng.
,
139
(
1
), p.
011009
.10.1115/1.4034995
19.
Baum
,
K. G.
,
McNamara
,
K.
, and
Helguera
,
M.
,
2008
, “
Design of a Multiple Component Geometric Breast Phantom
,”
Medical Imaging 2008: Physics of Medical Imaging
, Vol.
6913
,
International Society for Optics and Photonics
,
San Diego, CA
, p.
69134H
.10.1117/12.769939
20.
Alatalo
,
D.
,
Jiang
,
L.
,
Geddes
,
D.
, and
Hassanipour
,
F.
,
2020
, “
Nipple Deformation and Peripheral Pressure on the Areola During Breastfeeding
,”
ASME J. Biomech. Eng.
,
142
(
1
), p.
011004
.10.1115/1.4043665
21.
Negin Mortazavi
,
S.
,
Hassiotou
,
F.
,
Geddes
,
D.
, and
Hassanipour
,
F.
,
2015
, “
Mathematical Modeling of Mammary Ducts in Lactating Human Females
,”
ASME J. Biomech. Eng.
,
137
(
7
), p.
071009
.10.1115/1.4028967
22.
Eslami
,
P.
,
Tran
,
J.
,
Jin
,
Z.
,
Karady
,
J.
,
Sotoodeh
,
R.
,
Lu
,
M. T.
,
Hoffmann
,
U.
, and
Marsden
,
A.
,
2020
, “
Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
024503
.10.1115/1.4043722
23.
Chan
,
W. Y.
,
2006
, “
Simulation of Arterial Stenosis Incorporating Fluid-Structural Interaction and non-Newtonian Blood Flow
,”
Ph.D. thesis
,
RMIT University
,
Melbourne, Australia
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7762848312436afb7bee664a9e35ef22c6b7a98d
24.
Siogkas
,
P.
,
Sakellarios
,
A.
,
Exarchos
,
T.
,
Stefanou
,
K.
,
Fotiadis
,
D.
,
Naka
,
K.
,
Michalis
,
L.
,
Filipovic
,
N.
, and
Parodi
,
O.
,
2011
, “
Blood Flow in Arterial Segments: Rigid vs. Deformable Walls Simulations
,”
J. Serbian Soc. Comput. Mech.
,
5
(
1
), pp.
69
77
.http://www.sscm.kg.ac.rs/jsscm/index.php/volume-5-number-1-2011/79-paper-06-2011-1
25.
Jiang
,
L.
,
Alatalo
,
D. L.
,
Geddes
,
D. T.
, and
Hassanipour
,
F.
,
2018
, “
A Clinical Experiment on Infant Applied Pressures During Breastfeeding
,”
ASME
Paper No. IMECE2018-87674.10.1115/IMECE2018-87674
26.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M
, et al.,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,” accessed Mar. 14, 2025, https://www.tensorflow.org
27.
Agarap
,
A. F.
,
2018
, “
Deep Learning Using Rectified Linear Units (ReLU
),” CoRR,
abs/1803.08375
.10.48550/arXiv.1803.08375
28.
Ruder
,
S.
,
2016
, “
An Overview of Gradient Descent Optimization Algorithms
,” arXiv preprint
arXiv:1609.04747
.10.48550/arXiv.1609.04747
29.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint
arXiv:1412.6980
.10.48550/arXiv.1412.6980
30.
Hastie
,
T.
,
Tibshirani
,
R.
,
Friedman
,
J. H.
, and
Friedman
,
J. H.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, Vol.
2
,
Springer
,
New York
.
31.
Macy
,
I. G.
,
Hunscher
,
H. A.
,
Donelson
,
E.
, and
Nims
,
B.
,
1930
, “
Human Milk Flow
,”
Am. J. Di. Children
,
39
(
6
), pp.
1186
1204
.10.1001/archpedi.1930.01930180036004
32.
Rasmussen
,
M.
,
Frimer
,
E.
,
Galton
,
D.
, and
Petersson
,
L.
,
1992
, “
The Influence of Premilking Teat Preparation and Attachment Delay on Milk Yield and Milking Performance
,”
J. Dairy Sci.
,
75
(
8
), pp.
2131
2141
.10.3168/jds.S0022-0302(92)77973-9
33.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.10.1109/JPROC.2020.3004555
34.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.10.1126/science.aaw4741
35.
Berzins
,
A.
,
Radler
,
A.
,
Volkmann
,
E.
,
Sanokowski
,
S.
,
Hochreiter
,
S.
, and
Brandstetter
,
J.
,
2024
, “
Geometry-Informed Neural Networks
,” arXiv preprint
arXiv:2402.14009
.https://arxiv.org/abs/2402.14009
36.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
37.
Ghosh
,
S.
,
Busch
,
J.
,
Brikis
,
G. O.
, and
Dey
,
B.
,
2024
, “
Geometry-Aware PINNs for Turbulent Flow Prediction
,” arXiv preprint
arXiv:2412.01954
.10.48550/arXiv.2412.01954
38.
Liu
,
L.
,
Shen
,
L.
,
Johansson
,
A.
,
Balter
,
J. M.
,
Cao
,
Y.
,
Chang
,
D.
, and
Xing
,
L.
,
2022
, “
Real Time Volumetric MRI for 3D Motion Tracking Via Geometry-Informed Deep Learning
,”
Med. Phys.
,
49
(
9
), pp.
6110
6119
.10.1002/mp.15822
39.
Shen
,
L.
,
Zhao
,
W.
,
Capaldi
,
D.
,
Pauly
,
J.
, and
Xing
,
L.
,
2022
, “
A Geometry-Informed Deep Learning Framework for Ultra-Sparse 3D Tomographic Image Reconstruction
,”
Comput. Biol. Med.
,
148
, p.
105710
.10.1016/j.compbiomed.2022.105710
You do not currently have access to this content.