In this paper, the subharmonic resonance of Duffing oscillator with fractional-order derivative is investigated using the averaging method. First, the approximately analytical solution and the amplitude–frequency equation are obtained. The existence condition for subharmonic resonance based on the approximately analytical solution is then presented, and the corresponding stability condition based on Lyapunov theory is also obtained. Finally, a comparison between the fractional-order and the traditional integer-order of Duffing oscillators is made using numerical simulation. The influences of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude–frequency curves, and the system stability are also investigated.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
2002
,
The Fractional Calculus
,
Dover Publications
,
New York
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
3.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Machado
,
J. A. T.
, eds.,
2007
,
Advances in Fractional Calculus
,
Springer
,
Dordrecht, The Netherlands
.
4.
Atanackovic
,
T. M.
,
Pilipovic
,
S.
,
Stankovic
,
B.
, and
Zorica
,
D.
,
2014
,
Fractional Calculus With Applications in Mechanics
,
Wiley
,
London
.
5.
Baleanu
,
D.
,
Machado
,
J. A. T.
, and
Luo
,
A. C. J.
, eds.,
2012
,
Fractional Dynamics and Control
,
Springer
,
New York
.
6.
Zhang
,
W.
, and
Shimizu
,
N.
,
1998
, “
Numerical Algorithm for Dynamic Problems Involving Fractional Operator
,”
JSME Int. J., Ser. C
,
41
(
3
), pp.
364
370
.
7.
Zhang
,
W.
, and
Shimizu
,
N.
,
1999
, “
Damping Properties of the Viscoelastic Material Described by Fractional Kelvin-Voigt Model
,”
JSME Int. J., Ser. C
,
42
(
1
), pp.
1
9
.
8.
Shimizu
,
N.
, and
Zhang
,
W.
,
1999
, “
Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials
,”
JSME Int. J., Ser. C
,
42
(
4
), pp.
825
837
.
9.
Diethelm
,
K.
,
1997
, “
An Algorithm for the Numerical Solution of Differential Equations of Fractional Order
,”
Electron. Trans. Numer. Anal.
,
5
, pp.
1
6
.
10.
Fukunaga
,
M.
,
Shimizu
,
N.
, and
Nasuno
,
H. A.
,
2009
, “
Nonlinear Fractional Derivative Model of Impulse Motion for Viscoelastic Materials
,”
Phys. Scr.
,
2000
(T136), p.
014010
.
11.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2011
, “
Nonlinear Fractional Derivative Models of Viscoelastic Impact Dynamics Based on Entropy Elasticity and Generalized Maxwell Law
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021005
.
12.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2014
, “
Comparison of Fractional Derivative Models for Finite Deformation With Experiments of Impulse Response
,”
J. Vib. Control
,
20
(7), pp.
1033
1041
.
13.
Schmidt
,
A.
, and
Gaul
,
L.
,
2006
, “
On a Critique of a Numerical Scheme for the Calculation of Fractionally Damped Dynamical Systems
,”
Mech. Res. Commun.
,
33
(
1
), pp.
99
107
.
14.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
,
2008
, “
On a Numerical Scheme for Solving Differential Equations of Fractional Order
,”
Mech. Res. Commun.
,
35
(
7
), pp.
429
438
.
15.
Mitropolskii
,
I. A.
,
1967
, “
Averaging Method in Nonlinear Mechanics
,”
Int. J. Non-Linear Mech.
,
2
(
1
), pp.
69
96
.
16.
Mitropolskii
,
I. A.
, and
Dao
,
N. V.
,
1997
,
Applied Asymptotic Methods in Nonlinear Oscillations
,
Kluwer Publisher
,
Dordrecht, The Netherlands
.
17.
Dao
,
N. V.
,
1998
,
Stability of Dynamic Systems
,
VNU Publishing House
,
Hanoi, Vietnam
.
18.
Mitropolskii
,
I. A.
, and
Dao
,
N. V.
,
2003
,
Lectures on Asymptotic Methods of Nonlinear Dynamics
,
Vietnam National University Publishing House
,
Hanoi, Vietnam
.
19.
Sanders
,
J. A.
, and
Verhulst
,
F.
,
1985
,
Averaging Methods in Nonlinear Dynamical Systems
,
Springer
,
New York
.
20.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
21.
Thomsen
,
J. J.
,
2003
,
Vibration and Stability
, 2nd ed.,
Springer
,
Berlin
.
22.
Shen
,
Y.
,
Wei
,
P.
,
Sui
,
C.
, and
Yang
,
S.
,
2014
, “
Subharmonic Resonance of Van Der Pol Oscillator With Fractional-Order Derivative
,”
Math. Probl. Eng.
,
2014
, p.
738087
.
23.
Sheu
,
L.-J.
,
Chen
,
H.-K.
,
Chen
,
J.-H.
, and
Tam
,
L.-M.
,
2007
, “
Chaotic Dynamics of Fractionally Damped Duffing Equation
,”
Chaos, Solitons Fractals
,
32
(
4
), pp.
1459
1468
.
24.
Cao
,
J.
,
Ma
,
C.
,
Xie
,
H.
, and
Jiang
,
Z.
,
2010
, “
Nonlinear Dynamics of Duffing System With Fractional Order Damping
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041012
.
25.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
N.
, and
Gao
,
G.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3092
3100
.
26.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Ma
,
H.
,
2012
, “
Primary Resonance of Duffing Oscillator With Two Kinds of Fractional-Order Derivatives
,”
Int. J. Non-Linear Mech.
,
47
(
9
), pp.
975
983
.
27.
Chen
,
L.
,
Wang
,
W.
,
Li
,
Z.
, and
Zhu
,
W.
,
2013
, “
Stationary Response of Duffing Oscillator With Hardening Stiffness and Fractional Derivative
,”
Int. J. Non-Linear Mech.
,
48
, pp.
44
50
.
28.
Xu
,
Y.
,
Li
,
Y.
,
Liu
,
D.
, and
Huang
,
W. J. H.
,
2013
, “
Response of Duffing Oscillator With Fractional Damping and Random Phase
,”
Nonlinear Dyn.
,
74
(
3
), pp.
745
753
.
29.
Syta
,
A.
,
Litak
,
G.
,
Lenci
,
S.
, and
Scheffler
,
M.
,
2014
, “
Chaotic Vibrations of the Duffing System With Fractional Damping
,”
AIP Chaos
,
24
(
1
), p.
013107
.
30.
Duan
,
J.-S.
,
Huang
,
C.
, and
Liu
,
L.-L.
,
2015
, “
Response of a Fractional Nonlinear System to Harmonic Excitation by the Averaging Method
,”
Open Phys.
,
13
, pp.
177
182
.
31.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2004
, “
Averaging Oscillations With Small Fractional Damping and Delayed Terms
,”
Nonlinear Dyn.
,
38
(
1
), pp.
3
22
.
You do not currently have access to this content.